精英家教网 > 高中数学 > 题目详情
19.如图,在直三棱柱ABC-A1B1C1中,P,Q分别是AA1,B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,求证:平面ABC1⊥平面AA1C1C.

分析 (1)在BB1取点E,使BE=3EB1,连结PE、QE,推导出平面ABC1∥平面PQE,由此能证明PQ∥平面ABC1
(2)推导出AB⊥CC1,BC⊥CC1,AB⊥AC,从而AB⊥平面AA1C1C,由此能证明平面ABC1⊥平面AA1C1C.

解答 证明:(1)在BB1取点E,使BE=3EB1,连结PE、QE,
∵在直三棱柱ABC-A1B1C1中,P,Q分别是AA1,B1C1上的点,且AP=3A1P,B1C1=4B1Q,
∴PE∥AB,QE∥BC1
∵AB∩BC1=B,PE∩QE=E,AB、BC1?平面ABC1
PE、QE?平面PQE,
∴平面ABC1∥平面PQE,
∵PQ?平面PQE,∴PQ∥平面ABC1
解:(2)∵在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴AB⊥CC1,BC⊥CC1
∵AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,
∴AB=AA1=CC1=$\sqrt{13-9}$=2,AC=$\sqrt{A{{C}_{1}}^{2}-C{{C}_{1}}^{2}}$=$\sqrt{9-4}$=$\sqrt{5}$,
∴AB2+AC2=BC2,∴AB⊥AC,
又AC∩CC1=C,∴AB⊥平面AA1C1C,
∵AB?平面ABC1,∴平面ABC1⊥平面AA1C1C.

点评 本题考查线面平行、面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某工厂生产产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p(单位:毫克/升)与过滤时间t(单位:小时)之间的关系为:$p(t)={p_0}{e^{-kt}}$(式中的e为自然对数的底,p0为污染物的初始含量).过滤1小时后检测,发现污染物的含量减少了$\frac{1}{5}$.
(Ⅰ)求函数关系式p(t);
(Ⅱ)要使污染物的含量不超过初始值的$\frac{1}{1000}$,至少还需过滤几小时?(lg2≈0.3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x1,x2是函数f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]内的两个零点,则sin(x1+x2)=$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知幂函数f(x)=xk的图象经过函数g(x)=ax-2-$\frac{1}{2}$(a>0且a≠1)的图象所过的定点,则f($\frac{1}{4}$)的值等于(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=(2x-2)2+(2-x+2)2-10在区间[1,2]上的最大值与最小值之积为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4. 如图,点M($\sqrt{3}$,$\sqrt{2}$)在椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上,且点M到两焦点的距离之和为6.
(1)求椭圆的方程;
(2)设MO(O为坐标原点)处置的直线交椭圆于A,B(A,B不重合),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的程序框图,若输入n,x的值分别为3,3,则输出v的值为(  )
A.1B.5C.16D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z1=3+ai,z2=a-3i(i为虚数单位),若z1•z2是实数,则实数a的值为(  )
A.0B.±3C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)的图象与x轴交点的横坐标,依次构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则(  )
A.g(x)是奇函数B.g(x)的图象关于直线x=-$\frac{π}{4}$对称
C.g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上的增函数D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[-2,1]

查看答案和解析>>

同步练习册答案