分析 由题意可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,运用和差化积公式和同角的基本关系式,计算即可得到所求值.
解答 解:x1,x2是函数f(x)=2sin2x+cos2x-m在[0,$\frac{π}{2}$]内的两个零点,
可得m=2sin2x1+cos2x1=2sin2x2+cos2x2,
即为2(sin2x1-sin2x2)=-cos2x1+cos2x2,
即有4cos(x1+x2)sin(x1-x2)=-2sin(x2+x1)sin(x2-x1),
由x1≠x2,可得sin(x1-x2)≠0,
可得sin(x2+x1)=2cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
可得sin(x2+x1)=±$\frac{2\sqrt{5}}{5}$,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
另解:由对称性可知$\sqrt{5}$=2sin(x2+x1)+cos(x1+x2),
由sin2(x2+x1)+cos2(x1+x2)=1,
由x1+x2∈[0,π],
即有sin(x2+x1)=$\frac{2\sqrt{5}}{5}$.
故答案为:$\frac{2\sqrt{5}}{5}$.
点评 本题考查函数方程的转化思想,函数零点问题的解法,考查三角函数的恒等变换,同角基本关系式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
| 年份x | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -2i | C. | 2 | D. | 2i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$π | B. | $\sqrt{3}$π | C. | $\frac{2\sqrt{3}π}{3}$ | D. | $\frac{\sqrt{3}π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com