分析 设x>0,则-x<0,运用已知解析式和奇函数的定义,可得x>0的解析式,求得导数,代入x=1,计算得到所求切线的斜率,即可求出切线方程..
解答 解:设x>0,则-x<0,f(-x)=lnx+3x,
由f(x)为奇函数,可得f(-x)=-f(x),
即f(x)=-lnx-3x,x>0.
导数为f′(x)=-$\frac{1}{x}$-3,
则曲线y=f(x)在x=1处的切线斜率为-4,
∵f(1)=-3,
∴.曲线y=f(x)在(1,f(1))处的切线方程为y+3=-4(x-1),即4x+y-1=0,
故答案为4x+y-1=0.
点评 本题考查函数的奇偶性的定义的运用:求解析式,考查导数的运用:求切线的斜率,求得解析式和导数是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)是奇函数 | B. | g(x)的图象关于直线x=-$\frac{π}{4}$对称 | ||
| C. | g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上的增函数 | D. | 当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[-2,1] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com