精英家教网 > 高中数学 > 题目详情
15.函数f(x)=lnx+3x-7的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

分析 由函数的解析式求得f(2)f(3)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间.

解答 解:∵函数f(x)=lnx+3x-7在其定义域上单调递增,
∴f(2)=ln2+2×3-7=ln2-1<0,f(3)=ln3+9-7=ln3+2>0,
∴f(2)f(3)<0.
根据函数零点的判定定理可得函数f(x)的零点所在的区间是(2,3),
故选:C.

点评 本题主要考查求函数的值,函数零点的判定定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0.求$\frac{tan(-α-π)•sin(\frac{3π}{2}+α)}{cos(\frac{π}{2}-α)•tan(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲.乙、丙三人准备在2017年元旦去自驾游,有A、B两条线路可以选择,根据以往的经验,选择线路A,旅行中遇到堵车的概率是$\frac{2}{3}$,不堵车的概率是$\frac{1}{3}$,选择线路B,旅行中遇到堵车的概率是p,不堵车的概率是1-p,若甲、乙两人选择线路A,丙选择线路B.且三人在旅行中是否堵车互不影响.
(1)若三人中恰有一人遇到堵车的概率是$\frac{5}{18}$,求p的值;
(2)在(1)的条件下,求三人中遇到堵车的人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是公比不等于1的等比数列,前n项和为Sn,a11=512,且S8、S7、S9成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=n|an|,数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an},其前n项和为Sn,给出下列命题:
①若{an}是等差数列,则$({10,\frac{{{S_{10}}}}{10}}),({100,\frac{{{S_{100}}}}{100}}),({110,\frac{{{S_{110}}}}{110}})$三点共线;
②若{an}是等差数列,则${S_m},{S_{2m}}-{S_m},{S_{3m}}-{S_{2m}}({m∈{N^*}})$;
③若${a_1}=1,{S_{n+1}}=\frac{1}{2}{S_n}+2$,则数列{an}是等比数列;
④若${a_{n+1}}^2={a_n}{a_{n+2}}$,则数列{an}是等比数列.
其中证明题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)为奇函数,当x<0时,f(x)=ln(-x)-3x,则曲线y=f(x)在(1,f(1))处的切线方程为4x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a∈R,函数f(x)=lnx-ax+1.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个不同的零点x1,x2(x1<x2),求实数a的取值范围;
(3)在(2)的条件下,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三个数a=0.32,b=log20.3,c=20.3,则a,b,c之间的大小关系是(  )
A.b<a<cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.A是抛物线y2=2px(p>0)上的一点,F为抛物线的焦点,O为坐标原点,当|AF|=4时,∠OFA=120°,则抛物线的准线方程是(  )
A.x=-1B.y=-1C.x=-2D.y=-2

查看答案和解析>>

同步练习册答案