精英家教网 > 高中数学 > 题目详情

(满分14分)已知.
(1)求的值;
(2)求的值.

(1);(2)

解析试题分析:(1)要求的值,根据两角和的正弦公式,可知还要求得,由于已知,所以,利用同角关系可得;(2)要求,由两角差的余弦公式我们知要先求得,而这由二倍角公式结合(1)可很容易得到.本题应该是三角函数最基本的题型,只要应用公式,不需要作三角函数问题中常见的“角”的变换,“函数名称”的变换等技巧,可以算得上是容易题,当然要正确地解题,也必须牢记公式,及计算正确.
试题解析:(1)由题意
所以
(2)由(1)得
所以
【考点】三角函数的基本关系式,二倍角公式,两角和与差的正弦、余弦公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分图象如图所示:
(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ)的图象如图所示.

(1)求函数y=f(x)在上的表达式;
(2)求方程f(x)=的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=asin x+bcos的图象经过点.
(1)求实数a,b的值;
(2)求函数f(2x)的周期及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数.
(1)若,且,求的值;
(2)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=sin()-2cos2
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图象关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC中,cos(-A)+cos(π+A)=-
(1)判断△ABC是锐角三角形还是钝角三角形;
(2)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)求函数的周期和对称轴方程;
(2)求函数的单调递减区间.

查看答案和解析>>

同步练习册答案