精英家教网 > 高中数学 > 题目详情
11.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的斜率为±$\sqrt{3}$.

分析 由题意设出直线AB的方程,联立直线和抛物线方程,求出A,B的横坐标,由|AF|=3|BF|得到x1=3x2+2,代入A,B的坐标得答案.

解答 解:由y2=4x,得F(1,0),
设AB所在直线方程为y=k(x-1),
联立y2=4x,得k2x2-(2k2+4)x+k2=0.
设A(x1,y1),B(x2,y2),
结合|AF|=3|BF|,
解方程得:x1=$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$,x2=$\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$.
再由|AF|=3|BF|,
得x1+1=3(x2+1),即
x1=3x2+2,
∴$\frac{{k}^{2}+2}{{k}^{2}}$+$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$=3($\frac{{k}^{2}+2}{{k}^{2}}$-$\frac{2\sqrt{{k}^{2}+1}}{{k}^{2}}$)+2,
解得:k=±$\sqrt{3}$.
故答案为:±$\sqrt{3}$.

点评 本题考查了抛物线的简单几何性质,考查了抛物线的定义,考查了学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.任意两个复数均不能比较大小
B.复数z为实数的充要条件是$z=\overline z$
C.复数z=3+2i在复平面上对应的点在第二象限
D.复数i+3的共轭复数为i-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.命题p:$f(x)=\frac{2}{x-m}$在区间(-7,+∞)是减函数,命题q:不等式${m^2}+5m-3≥\sqrt{{a^2}+8}$对任意的实数a∈[-1,1]恒成立.若(?p)∧q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(1)求随机抽取的市民中年龄段在[30,40)的人数;
(2)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2014)+f(-2014)+f′(2015)-f′(-2015)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若$f(x)=\sqrt{3}{cos^2}kx-sinkxcoskx(k>0)$的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列,则k=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sinx+excosx的导数为(  )
A.y′=(1+ex)cosx+exsinxB.y′=cosx+exsinx
C.y′=(1+ex)cosx-exsinxD.y′=cosx-exsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2cos(x-$\frac{π}{3}$)的单调递增区间是(  )
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t为参数,t∈R),
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)试求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

同步练习册答案