精英家教网 > 高中数学 > 题目详情
1.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t为参数,t∈R),
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)试求曲线C上的点到直线l的距离的最大值.

分析 (1)曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,利用互化公式可得:曲线C的普通方程.直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t为参数,t∈R),消去参数t可得:直线l的普通方程.
(2)设点M的直角坐标是$(\sqrt{3}cosθ,sinθ)$,利用点到直线的距离公式可得:点M到直线l的距离是d=$\frac{{\sqrt{3}|{\sqrt{2}sin(θ+\frac{π}{4})-1}|}}{2}$,再利用三角函数的单调性与值域即可得出.

解答 解:(1)曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,利用互化公式可得:曲线C的普通方程是$\frac{x^2}{3}+{y^2}=1$.
直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t为参数,t∈R),消去参数t可得:直线l的普通方程是$x+\sqrt{3}y-\sqrt{3}=0$.
(2)设点M的直角坐标是$(\sqrt{3}cosθ,sinθ)$,
则点M到直线l的距离是$d=\frac{{|{\sqrt{3}cosθ+\sqrt{3}sinθ-\sqrt{3}}|}}{2}$=$\frac{{\sqrt{3}|{\sqrt{2}sin(θ+\frac{π}{4})-1}|}}{2}$,
因此当$sin(θ+\frac{π}{4})=-1$时,d取得最大值为$\frac{{\sqrt{6}+\sqrt{3}}}{2}$.

点评 本题考查了极坐标与直角坐标方程互化公式、参数方程化为普通方程、点到直线的距离公式、三角函数的单调性与值域、椭圆参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的斜率为±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在[-3,3]的偶函数f(x)且满足f(x+1)=f(x-1),当x∈[0,1]时,f(x)=cosx,则y=f(x)与y=lgx的图象的交点个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知(1-x+x27=a0+a1x+a2x2+…+a14x14.求:
(1)a0+a1+a2+…+a14
(2)a1+a3+a5+…+a13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C对应的边分别为a,b,c,若a,b,c等比,则下列结论一定正确的是(  )
A.A是锐角B.B是锐角
C.C是锐角D.△ABC是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果集合P={x||x|>2},集合T={x|3x>1},那么集合P∩T等于{x|x>2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是$\frac{2}{3}$,向右的概率是$\frac{1}{3}$,问6秒后到达B(4,2)点的概率为$\frac{20}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,集合A={a,a+b,1},B={b,$\frac{b}{a}$,0},且A⊆B,B⊆A,求a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面积为$\frac{3\sqrt{3}}{2}$,求b,c.

查看答案和解析>>

同步练习册答案