精英家教网 > 高中数学 > 题目详情
10.已知a、b∈R,集合A={a,a+b,1},B={b,$\frac{b}{a}$,0},且A⊆B,B⊆A,求a-b的值.

分析 根据集合的基本运算,A⊆B,B⊆A,说明A=B,即可求解.

解答 解:由题意:∵A⊆B,B⊆A,说明A=B,
由:$\frac{b}{a}$可知,a≠0,∴a+b=0,即a=-b,∴$\frac{b}{a}$=-1.
解得:b=1,a=-1,
故:a-b=-2.

点评 本题主要考查集合的基本运算,集合中的元素互异性.比较基础.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2cos(x-$\frac{π}{3}$)的单调递增区间是(  )
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t为参数,t∈R),
(1)写出曲线C的直角坐标方程和直线l的普通方程;
(2)试求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.假设200件产品中有3件次品,现在从中任取5件,至少有2件次品的抽法数有(  )
A.C${\;}_{3}^{2}$C${\;}_{198}^{3}$B.C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$
C.C${\;}_{200}^{5}$-C${\;}_{197}^{4}$D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(  )
A.m<$\frac{2}{3}$B.-1<m<$\frac{2}{3}$C.$-\frac{1}{2}$<m<$\frac{2}{3}$D.m>$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若x>0,y>0,2x+8y-7=xy,求xy的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.求值:4cos50°-tan40°=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$-1D.$\frac{\sqrt{2}+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=$\frac{{x}^{2}+a}{bx-c}$(b,c∈N*)有且仅有两个不动点0,2,且f(-2)<-$\frac{1}{2}$.
(1)试求函数f(x)的单调区间;
(2)已知各项不为1的数列{an}满足${4S}_{n}•f(\frac{1}{{a}_{n}})=1$,求证:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)在(2)中,设bn=-$\frac{1}{{a}_{n}}$,Tn为数列{bn}的前n项和,求证:T2016-1<ln2016<T2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案