精英家教网 > 高中数学 > 题目详情
19.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=$\frac{{x}^{2}+a}{bx-c}$(b,c∈N*)有且仅有两个不动点0,2,且f(-2)<-$\frac{1}{2}$.
(1)试求函数f(x)的单调区间;
(2)已知各项不为1的数列{an}满足${4S}_{n}•f(\frac{1}{{a}_{n}})=1$,求证:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)在(2)中,设bn=-$\frac{1}{{a}_{n}}$,Tn为数列{bn}的前n项和,求证:T2016-1<ln2016<T2015

分析 (1)利用函数f(x)=$\frac{{x}^{2}+a}{bx-c}$=x,可知:(1-b2)x2+cx+a=0,由韦达定理可知$\left\{\begin{array}{l}{2+0=-\frac{c}{1-b}}\\{2×0=\frac{a}{1-b}}\end{array}\right.$,由f(-2)=$\frac{-2}{1+c}$<-$\frac{1}{2}$,求得c的取值范围,即可求得c和b的值,即可求得函数的解析式,利用导数法求函数f(x)的单调区间;
(2)由题意可知:求得4Sn•$\frac{1}{{2a}_{n}(1-{a}_{n})}$=1,即可求得2Sn=an-${a}_{n}^{2}$,当n≥2时,2Sn-1=an-1-${a}_{n-1}^{2}$,两式相减得:(an+an-1)(an-an-1+1)=0,即可求得an=-an-1或an-an-1=-1,即可求得an=-n,构造辅助函数,求导,利用函数的单调性,即可求得$\frac{1}{x+1}$<ln$\frac{x+1}{x}$<$\frac{1}{x}$,x>0,继而求得-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)bn=$\frac{1}{n}$,则${T_n}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,$\frac{1}{n+1}$<ln$\frac{n+1}{n}$<$\frac{1}{n}$中令n=1,2,3,…,2015,并将各式相加得T2016-1<ln2016<T2015

解答 解:(1)设$\frac{{x}^{2}+a}{bx-c}$=x,则(1-b2)x2+cx+a=0,(b≠1),
∴0和2是方程的两个根,由韦达定理可知:$\left\{\begin{array}{l}{2+0=-\frac{c}{1-b}}\\{2×0=\frac{a}{1-b}}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=0}\\{b=1+\frac{c}{a}}\end{array}\right.$,-----(1分)
∴f(x)=$\frac{{x}^{2}}{(1+\frac{c}{2})x-c}$,
 由f(-2)=$\frac{-2}{1+c}$<-$\frac{1}{2}$,解得:-1<c<3,
又∵b,c∈N*,
∴c=2,b=2,
∴f(x)=$\frac{{x}^{2}}{2(x-1)}$(x≠1),-----(2分)
于是f′(x)=$\frac{2x×2(x-1)-{x}^{2}×2}{4(x-1)^{2}}$=$\frac{{x}^{2}-2x}{2(x-1)^{2}}$,
由f′(x)>0,解得x<0或x>2;   由f′(x)<0,解得0<x<1或1<x<2,
故函数f(x)的单调递增区间为(-∞,0)和(2,+∞),-----(3分)
单调减区间为(0,1)和(1,2)-----(4分)
(2)由已知可得${4S}_{n}•f(\frac{1}{{a}_{n}})=1$,4Sn•$\frac{1}{{2a}_{n}(1-{a}_{n})}$=1,
∴2Sn=an-${a}_{n}^{2}$,
当n≥2时,2Sn-1=an-1-${a}_{n-1}^{2}$,
两式相减得:(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1-----(5分)
当n=1时,2a1=a1-${a}_{1}^{2}$,解得:a1=-1,
若an=-an-1,则a2=1这与an≠1矛盾
∴an-an-1=-1,
∴an=-n-----(6分)
∴$\frac{1}{n+1}$<ln$\frac{n+1}{n}$<$\frac{1}{n}$,
为此,只要证明不等式$\frac{1}{x+1}$<ln$\frac{x+1}{x}$<$\frac{1}{x}$,x>0,
令1+$\frac{1}{x}$=t,x>0则t>1,x=$\frac{1}{t-1}$,
再令g(t)=t-1-lnt,g′(t)=1-$\frac{1}{t}$由t∈(1,+∞)知g′(t)>0,
∴当t∈(1,+∞)时,g(t)单调递增,
∴g(t)>g(1)=0,于是t-1>lnt,
即$\frac{1}{x}$>ln$\frac{x+1}{x}$,x>0  ①-----(8分)
令h(t)=lnt-1+$\frac{1}{t}$,h′(t)=$\frac{1}{t}$-$\frac{1}{{t}^{2}}$=$\frac{t-1}{{t}^{2}}$,
由t∈(1,+∞)知h′(t)>0,
∴当t∈(1,+∞)时,h(t)单调递增,
∴h(t)>h(1)=0,于是lnt>1-$\frac{1}{t}$,
即ln$\frac{x+1}{x}$>$\frac{1}{x+1}$,x>0    ②
由①、②可知$\frac{1}{x+1}$<ln$\frac{x+1}{x}$<$\frac{1}{x}$,x>0,
所以,$\frac{1}{n+1}$<ln$\frac{n+1}{n}$<$\frac{1}{n}$,即1-$\frac{1}{{a}_{n}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$,
∴-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;-----(9分)
(3)由(2)可知bn=$\frac{1}{n}$,则${T_n}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$,
在$\frac{1}{n+1}$<ln$\frac{n+1}{n}$<$\frac{1}{n}$中令n=1,2,3,…,2015,
并将各式相加得:$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2016}<ln\frac{2}{1}+ln\frac{3}{2}+…+ln\frac{2016}{2015}<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{2015}$,
即T2016-1<ln2016<T2015-----(12分)

点评 本题主要考查利用导数研究函数的单调性,数列与不等式的综合应用,函数的导数判断函数的单调性构造法的应用,分析法证明不等式的方法,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知(1-x+x27=a0+a1x+a2x2+…+a14x14.求:
(1)a0+a1+a2+…+a14
(2)a1+a3+a5+…+a13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,集合A={a,a+b,1},B={b,$\frac{b}{a}$,0},且A⊆B,B⊆A,求a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,点M是BC的中点,△AMC的三边长是连续的三个正整数,且tan∠C=$\frac{1}{tan∠BAM}$.
(1)判断△ABC的形状;
(2)求∠BAC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.若存在常数λ,使得|PT|2=λ|PA|•|PB|,则λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|mx2+2$\sqrt{2}$x-2≤0},B={x|mx2+2$\sqrt{2}$x+1≥0},且A∩B有且仅有一个元素,则实数m的取值的集合为{-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面积为$\frac{3\sqrt{3}}{2}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|1<x≤5},集合B={x|$\frac{2x-5}{x-6}$≥0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤4a-3},且C∪A=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|$\frac{2x+1}{x-2}>1$},B={x|1<2x<8},则A∩B等于(  )
A.(2,3)B.(-3,3)C.(0,3)D.(1,3)

查看答案和解析>>

同步练习册答案