精英家教网 > 高中数学 > 题目详情
7.在△ABC中,点M是BC的中点,△AMC的三边长是连续的三个正整数,且tan∠C=$\frac{1}{tan∠BAM}$.
(1)判断△ABC的形状;
(2)求∠BAC的余弦值.

分析 (1)假设∠BAM=α,∠MAC=β,根据正弦定理可找到α,β与B,C的正弦之间的关系,进而再由诱导公式可确定α与β的关系.
(2)先设出3个连续的整数,再由勾股定理确定关系,根据余弦定理和二倍角公式可求出角BAC的余弦值.

解答 (本题满分为12分)
解:(1)设∠BAM=α,∠MAC=β,则由tanC=cotα,可得α+C=90°,
∴β+B=90°.…(1分)
△ABM中,由正弦定理得$\frac{BM}{sinα}=\frac{AM}{sinB}$,即$\frac{sinB}{sinα}=\frac{AM}{MB}$,同理得$\frac{sinC}{sinβ}=\frac{AM}{MC}$,…(3分)
∵MB=MC,
∴$\frac{sinB}{sinα}$=$\frac{sinC}{sinβ}$,
∴sinαsinC=sinβsinB,
∵α+C=90°,β+B=90°,
∴sinαcosα=sinβcosβ,…(5分)
即sin2α=sin2β,
∴α=β,或α+β=90°,
当α+β=900时,AM=$\frac{1}{2}$BC=MC,与△AMC的三边长是连续三个正整数矛盾,
∴α=β,∴∠B=∠C,
∴△ABC是等腰三角形.…(7分)
(2)在直角三角形AMC中,设两直角边分别为n,n-1,斜边为n+1,
由(n+1)2=n2+(n-1)2,得n=4,…(9分)
由余弦定理或二倍角公式得cos∠BAC=$\frac{7}{25}$,或cos∠BAC=-$\frac{7}{25}$.…(12分)

点评 本题主要考查正弦定理、余弦定理的应用.三角函数部分公式比较多,一定要强化记忆,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知E、F、G、H分别为空间四边形ABCD的边AB、BC、CD、DA上的点,且EE=2,EH=1,四边形EFGH为平行四边形.
(Ⅰ)求证:EH∥BD;
(Ⅱ)连结AC,若AC⊥BD,求FH的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.假设200件产品中有3件次品,现在从中任取5件,至少有2件次品的抽法数有(  )
A.C${\;}_{3}^{2}$C${\;}_{198}^{3}$B.C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$
C.C${\;}_{200}^{5}$-C${\;}_{197}^{4}$D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若x>0,y>0,2x+8y-7=xy,求xy的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.求值:4cos50°-tan40°=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$-1D.$\frac{\sqrt{2}+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为12+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=$\frac{{x}^{2}+a}{bx-c}$(b,c∈N*)有且仅有两个不动点0,2,且f(-2)<-$\frac{1}{2}$.
(1)试求函数f(x)的单调区间;
(2)已知各项不为1的数列{an}满足${4S}_{n}•f(\frac{1}{{a}_{n}})=1$,求证:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)在(2)中,设bn=-$\frac{1}{{a}_{n}}$,Tn为数列{bn}的前n项和,求证:T2016-1<ln2016<T2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数图象与x轴均有交点,其中不能用二分法求函数零点近似值的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}\right.$,目标函数z=3x+y+a的最大值为4,则a=-3.

查看答案和解析>>

同步练习册答案