精英家教网 > 高中数学 > 题目详情
12.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为12+4$\sqrt{3}$.

分析 借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4$\sqrt{3}$

解答 解:由三视图知,AB=BC=CD=DA=2,CE⊥平面ABCD,CE=2,
AE⊥平面ABCD,AE=2,
EF=2$\sqrt{2}$,BE=BF=DE=DF=2,
则△DEF,△BEF为正三角形,
则S△ABF=S△ADF=S△CDE=S△CBE=$\frac{1}{2}$×2×2=2,
S△BEF=$\frac{1}{2}$×2$\sqrt{2}$×2$\sqrt{2}$×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
S△DEF═$\frac{1}{2}$×2$\sqrt{2}$×2$\sqrt{2}$×$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,S正方形ABCD=2×2=4,
则该几何体的表面积S=4×2+2$\sqrt{3}$+2$\sqrt{3}$+4=12+4$\sqrt{3}$,
故答案为:12+4$\sqrt{3}$

点评 本题主要考查空间几何体的表面积,根据三视图确定对应几何体的边长关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上一点P(x0,y0)(y0≠0)的切线的斜率为-$\frac{{b}^{2}{x}_{0}}{{a}^{2}{y}_{0}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x+1)=x2+3x,则f(x)的表达式为(  )
A.f(x)=x2+x+1B.f(x)=x2-x-2C.f(x)=x2-x+1D.f(x)=x2+x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\frac{|1+i|}{1+i}$+$\frac{1+i}{|1+i|}$=(  )
A.$\sqrt{2}$B.2C.$\sqrt{2}$+$\sqrt{2}$iD.$\sqrt{2}$-$\sqrt{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,点M是BC的中点,△AMC的三边长是连续的三个正整数,且tan∠C=$\frac{1}{tan∠BAM}$.
(1)判断△ABC的形状;
(2)求∠BAC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x、y满足约束条件$\left\{{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\\{y≥1}\end{array}}$,则z=$\frac{x+2y}{x}$的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|mx2+2$\sqrt{2}$x-2≤0},B={x|mx2+2$\sqrt{2}$x+1≥0},且A∩B有且仅有一个元素,则实数m的取值的集合为{-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在长方体ABCD-A1B1C1D1中,AB=4,BC=3,AA1=5,则A1C与平面ABCD所成角的正切值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)为定义在R上的偶函数,当x≥0时,f(x)=2x-2,则不等式f(x-1)≤6的解集是[-2,4].

查看答案和解析>>

同步练习册答案