分析 (1)求出B中不等式的解集确定出B,找出A与B的交集即可;
(2)由C与A的并集为A,得到C为A的子集,分C为空集与不为空集两种情况求出a的范围即可.
解答 解:(1)由B中不等式变形得:(2x-5)(x-6)≥0,
解得:x≤$\frac{5}{2}$或x>6,即B={x|x≤$\frac{5}{2}$或x>6},
∵A={x|1<x≤5},
∴A∩B={x|1<x≤$\frac{5}{2}$};
(2)∵C∪A=A,∴C⊆A,
①当4a-3<a,即a<1时,C=∅,满足题意;
②当4a-3≥a,即a≥1时,要使C⊆A,则有$\left\{\begin{array}{l}{a>1}\\{4a-3≤5}\end{array}\right.$,
解得:1<a≤2,
综上所述,实数a的取值范围为(-∞,1)∪(1,2].
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{3}^{2}$C${\;}_{198}^{3}$ | B. | C${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$ | ||
| C. | C${\;}_{200}^{5}$-C${\;}_{197}^{4}$ | D. | C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com