分析 (I)由cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$,A,B∈(0,π),可得sinA=$\sqrt{1-co{s}^{2}A}$,sinB=$\sqrt{1-co{s}^{2}B}$.sinC=sin(A+B)=sinAcosB+cosAsinB.
(II)由正弦定理可得:a=$\frac{csinA}{sinC}$,b=$\frac{csinB}{sinC}$.S△ABC=$\frac{1}{2}absinC$=$\frac{{c}^{2}}{2}$×$\frac{sinAsinB}{si{n}^{2}C}$.
解答 解:(I)∵cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$,A,B∈(0,π),∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{12}{13}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$.
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{12}{13}$×$\frac{4}{5}$-$\frac{5}{13}$×$\frac{3}{5}$=$\frac{33}{65}$.
(II)由正弦定理可得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,可得:a=$\frac{csinA}{sinC}$,b=$\frac{csinB}{sinC}$.
S△ABC=$\frac{1}{2}absinC$=$\frac{{c}^{2}}{2}$×$\frac{sinAsinB}{si{n}^{2}C}$=$\frac{1{1}^{2}}{2}$×$\frac{\frac{12}{13}×\frac{3}{5}}{(\frac{33}{65})^{2}}$=234.
点评 本题考查了正弦定理、和差公式、三角函数基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(a)g(a)=f(b)g(b) | B. | f(a)g(a)>f(b)g(b) | ||
| C. | f(a)g(a)<f(b)g(b) | D. | f(a)g(a)与f(b)g(b)大小关系不定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{3π}{4}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-25)<f(19)<f(40) | B. | f (40)<f(19)<f(-25) | C. | f(19)<f(40)<f(-25) | D. | f(-25)<f(40)<f(19) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{10}}}{2}$ | B. | $\frac{{\sqrt{17}}}{3}$ | C. | $\frac{{\sqrt{58}}}{4}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com