精英家教网 > 高中数学 > 题目详情
13.设F1、F2分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,过点F2的直线交双曲线右支于A、B两点,若AF2⊥AF1,且|BF2|=2|AF2|,则双曲线的离心率为(  )
A.$\frac{{\sqrt{10}}}{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{\sqrt{58}}}{4}$D.$\sqrt{13}$

分析 由题意,设|AF2|=m,则|BF2|=2m,利用勾股定理,求出a,m的关系,再利用勾股定理确定a,c的关系,即可求出双曲线的离心率.

解答 解:由题意,设|AF2|=m,则|BF2|=2m,
∴|AF1|=2a+m,|BF1|=2a+2m,
∵AF2⊥AF1
∴(2a+2m)2=(2a+m)2+(3m)2
∴m=$\frac{2}{3}$a,
∵(2c)2=(2a+m)2+(m)2
∴e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故选:B.

点评 本题考查双曲线的离心率,考查勾股定理的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若AB边的长为11,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知关于x的二次方程x2+2mx+2m+1=0,试问:
(1)当m为何值时,方程有一根大于1,另一根小于1;
(2)当 m为何值时,方程有两负根;
(3)当m为何值时,方程两根都在(0,1)内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x2+$\sqrt{{x^2}-1}$中y的取值范围是(  )
A.y≥0B.y≥1C.$y≥\frac{3}{4}$D.$\frac{3}{4}≤y≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=$\frac{2x-5}{x-3}$的值域是[-4,2).
(1)作出函数图象;
(2)求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知方程mx2+(m-4)y2=2m+2表示焦点在x轴上的双曲线.
(1)求m的取值范围;
(2)当m=2时,直线y=kx+2与双曲线右支交于不同的两点A、B,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将正三棱柱截去三个角(如图甲所示,A,B,C分别是三边的中点)得到几何图形乙.则该几何体的正视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为数列{an}的前n项和,若a1=1,a2=2,a2n+1-a2n-1=2,a2n+2=2a2n,则当Sm=1122时,m=(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的前m项和为30,前2m项和为90,那么它的前3m项和为(  )
A.130B.180C.210D.260

查看答案和解析>>

同步练习册答案