精英家教网 > 高中数学 > 题目详情
5.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,则实数m的取值范围为(  )
A.m<$\frac{2}{3}$B.-1<m<$\frac{2}{3}$C.$-\frac{1}{2}$<m<$\frac{2}{3}$D.m>$-\frac{1}{2}$

分析 由条件利用函数的单调性和定义域可得 $\left\{\begin{array}{l}{-2<m-1<2}\\{-2<1-2m<2}\\{m-1<1-2m}\end{array}\right.$,由此求得m的范围.

解答 解:∵f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,
∴f(m-1)>f(1-2m),
∴$\left\{\begin{array}{l}{-2<m-1<2}\\{-2<1-2m<2}\\{m-1<1-2m}\end{array}\right.$,
求得-$\frac{1}{2}$<m<$\frac{2}{3}$,
故选:C.

点评 本题主要考查函数的单调性和定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,AB⊥AC,顶点A1在底面ABC上的射影恰为点B,且AB=AC=A1B=2.
(1)证明:平面A1AC⊥平面AB1B;
(2)在棱B1C1上是否存在点P,使二面角P-AB-A1的余弦值为$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,角A,B,C对应的边分别为a,b,c,若a,b,c等比,则下列结论一定正确的是(  )
A.A是锐角B.B是锐角
C.C是锐角D.△ABC是钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在网格状小地图中,一机器人从A(0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是$\frac{2}{3}$,向右的概率是$\frac{1}{3}$,问6秒后到达B(4,2)点的概率为$\frac{20}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知函数f(x)=$\frac{1+lnx}{x}$,当x≥1时,不等式f(x)≥$\frac{k}{x+1}$恒成立,求实数k的取值范围;
(2)已知不等式f(x)=ln(x+1)-ax+ex.如果对任意x≥0,f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a、b∈R,集合A={a,a+b,1},B={b,$\frac{b}{a}$,0},且A⊆B,B⊆A,求a-b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数m∈[0,1],n∈[0,2],则关于x的一元二次方程4x2+4mx-n2+2n=0有实数根的概率是(  )
A.1-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π-3}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.若存在常数λ,使得|PT|2=λ|PA|•|PB|,则λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知|$\overrightarrow a$|=$\sqrt{10}$,$\overrightarrow a$•$\overrightarrow b$=-$\frac{{5\sqrt{30}}}{2}$,且(${\overrightarrow a$-$\overrightarrow b}$)•(${\overrightarrow a$+$\overrightarrow b}$)=-15,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案