| A. | (0,$\frac{1}{4}$)∪(2$\sqrt{3}$-2,$\frac{3}{2}$] | B. | [0,$\frac{1}{4}$)∪(2$\sqrt{3}$-2,$\frac{3}{2}$] | C. | [0,$\frac{1}{4}$]∪(2$\sqrt{3}$-2,$\frac{3}{2}$] | D. | (0,$\frac{1}{4}$]∪(2$\sqrt{3}$-2,$\frac{3}{2}$] |
分析 作出f(x)与y=kx的函数图象,根据交点个数判断k的范围.
解答 解:作出f(x)与y=kx的函数图象如图所示:![]()
若直线y=kx过(4,1),则k=$\frac{1}{4}$,
若直线y=kx过(2,3),则k=$\frac{3}{2}$,
若直线y=kx与y=x2-2x+3相切,设切点坐标为(x0,y0),
则$\left\{\begin{array}{l}{{y}_{0}=k{x}_{0}}\\{{y}_{0}={{x}_{0}}^{2}-2{x}_{0}+3}\\{2{x}_{0}-2=k}\end{array}\right.$,解得x0=$\sqrt{3}$,y0=6-2$\sqrt{3}$,k=2$\sqrt{3}$-2,
∴当0≤k<$\frac{1}{4}$或2$\sqrt{3}-2$<k≤$\frac{3}{2}$时,直线y=kx与f(x)的图象有3个交点,
故选B.
点评 本题考查了方程解与函数图象的关系,导数的几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{6}{7}$ | C. | -$\frac{2}{3}$ | D. | -$\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{{3\sqrt{7}}}{7}$ | D. | $\frac{\sqrt{7}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{6}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | t=-$\frac{\sqrt{3}}{2}$,m的最小值为$\frac{π}{6}$ | B. | t=-$\frac{\sqrt{3}}{2}$,m的最小值为$\frac{π}{12}$ | ||
| C. | t=-$\frac{1}{2}$,m的最小值为$\frac{π}{12}$ | D. | t=-$\frac{1}{2}$,m的最小值为$\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com