精英家教网 > 高中数学 > 题目详情

参数方程数学公式(0<θ<2π)表示


  1. A.
    双曲线的一支,这支过点数学公式
  2. B.
    抛物线的一部分,这部分过数学公式
  3. C.
    双曲线的一支,这支过点数学公式
  4. D.
    抛物线的一部分,这部分过数学公式
B
分析:将参数方程化为普通方程,然后再对A、B、C、D进行判断;
解答:∵x=|cos+sin|,∴x2=1+sinθ,
∵y=(1+sinθ),
∴y=x2,是抛物线;
当x=1时,y=
故选B.
点评:此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,直线l的参数方程为
x=t+3
y=3-t
(参数t∈R),圆C的参数方程为
x=2cosθ
y=2sinθ+2
,(参数θ∈[0,2π]),则圆C的圆心坐标为
 
,圆心到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
已知矩阵M=(
2a
2b
)的两^E值分别为λ1=-1和λ2=4.
(I)求实数的值;
(II )求直线x-2y-3=0在矩阵M所对应的线性变换作用下的像的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标平面内,以坐标原点O为极点x轴的非负半轴为极轴建立极坐标系.已知曲线C的参数方程为
x=sinα
y=2cos2α-2

(a为餓),曲线D的鍵标方程为ρsin(θ-
π
4
)=-
3
2
2

(I )将曲线C的参数方程化为普通方程;
(II)判断曲线c与曲线D的交点个数,并说明理由.
(3)选修4-5:不等式选讲
已知a,b为正实数.
(I)求证:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的结论求函数y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C的参数方程为
x=2cosθ
y=2sinθ+2
(参数θ∈[0,2π)),则点A(0,-2)到圆C的最小距离是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在平面直角坐标系中,直线L的参数方程为
x=t+3
y=3-t
(参数t∈R),圆的参数
方程为
x=2cosθ
y=2sinθ+2
(参数θ∈[0,2π))则圆心到直线l的距离为
 

查看答案和解析>>

同步练习册答案