精英家教网 > 高中数学 > 题目详情

某高校在2011年的自主招生考试成绩
中随机抽取100名学生的笔试成绩,按成绩
分组:第1组[75,80),第2组[80,85),
第3组[85,90),第4组[90,95),第5组
[95,100]得到的频率分布直方图如图所示.
(Ⅰ)分别求第3,4,5组的频率;
(Ⅱ)若该校决定在笔试成绩高的第3,4,5组
中用分层抽样抽取6名学生进入第二轮面
试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.

解:(Ⅰ)由题设可知,第组的频率为
组的频率为
组的频率为
……………………3分
(Ⅱ)第组的人数为
组的人数为
组的人数为
因为第组共有名学生,
所以利用分层抽样在名学生中抽取名学生,每组抽取的人数分别为:
组:
组:
组:
所以第组分别抽取人,人,人. ……………………8分
(Ⅲ)设第组的位同学为
组的同学为
组的位同学为
则从六位同学中抽两位同学有:




种可能.
其中第组的位同学为至少有一位同学入选的有:

种可能,
所以第组至少有一名学生被甲考官面试的概率为
……………………13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意  单位:名

 


总计
满意
50
30
80
不满意
10
20
30
总计
60
50
110
(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关
注:
临界值表:
P()
0.05
0.025
0.010
0.005

3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某中学生物兴趣小组在学校生物园地种植了一批名贵树苗,为了解树苗的生长情况,从这批树苗中随机地测量了其中50棵树苗的高度(单位:厘米),并把这些高度列成了如下的频数分布表:

(1)在这批树苗中任取,其高度在85厘米以上的大约有多少棵;
(2)这批树苗的平均高度大约是多少?(计算时可以用组中值代替各组数据的平均值);
(3)为了进一步获得研究资料,若从组中移出一棵树苗,从组中移出两棵树苗进行试验研究,则组中的树苗A和组中的树苗C同时被移出的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2列联表;
(2)判断休闲方式与性别是否有关。
(参考公式:
参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:

组别
频数
频率
145.5~149.5
1
0.02
149.5~153.5
4
0.08
153.5~157.5
20
0.40
157.5~161.5
15
0.30
161.5~165.5
8
0.16
165.5~169.5
m
n
合 计
M
N
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图
(3)全体女生中身高在哪组范围内的人数最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业的某种产品产量与单位成本统计数据如下:

月份
1
2
3
4
5
6
产量(千克)
2
3
4
3
4
5
单位成本(元/件)
73
72
71
73
69
68
(1)试确定回归方程;(保留三位小数)
(2)指出产量每增加1000件时,单位成本下降多少?
(3)假定产量为6000件时,单位成本是多少?单位成本为70元/件时,产量应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.

(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下

性别
是否达标


合计
达标

______
_____
不达标
_____

_____
合计
______
______

根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅
油画组合而成的世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如下表所示.

分 组
(单位:岁)
 
频数
 
频 率
 

 
 5
 
0.050
 

 
 ①
 
0.200
 

 
35
 

 

 
30
 
0.300
 

 
10
 
0.100
 
合 计
 
100
 
1.00
 

(1)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,
再根据频率分布直方图估计这507名画师中年龄岁的人数(结果取整数);
(2)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会
圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
为考察某种甲型H1N1疫苗的效果,进行动物实验,得到如下疫苗效果的实验列联表:

 
感染
未感染
总计
没服用
20
30
50
服用
x
y
50
总计
M
N
100
   设从没服用疫苗的动物中任取两只,感染数为从服从过疫苗的动物中任取两只,感染数为工作人员曾计算过
 (1)求出列联表中数据的值;
(2)写出的均值(不要求计算过程),并比较大小,请解释所得出的结论的实际意义;
(3)能够以97.5%的把握认为这种甲型H1N1疫苗有效么?并说明理由。
参考公式:
   参考数据:

0.05
0.025
0.010

3.841
5.024
6.635
 

查看答案和解析>>

同步练习册答案