精英家教网 > 高中数学 > 题目详情
16.设p:x≥0,q:log${\;}_{\frac{1}{2}}$(x+1)>0,则¬p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分敢不必要条件

分析 先求出关于q的x的范围,从而判断出¬p和q的关系.

解答 解:p:x≥0,则¬p:x<0,
q:log${\;}_{\frac{1}{2}}$(x+1)>0,
则0<x+1<1,解得:-1<x<0,
则¬p是q的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查命题的否定,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.m,n,l是直线,α,β是两个不同的平面,下面说法正确的是(  )
A.若m∥α,m∥β,则α∥β
B.若m⊥α,m?β,则α⊥β
C.若m?α,n?α,m,n是异面直线,则n与α相交
D.若m?α,n?α,l⊥m,l⊥n,则l⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的二次函数y=x2-2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x1,y1)、B(x2,y2)(x1<x2);
(1)当k=1,m=0或1时,求AB的长;
(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想;
(3)当m=0,无论k为何值时,猜想△AOB的形状,并证明你的猜想.
(平面内两点间的距离公式AB=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将八进制数123(8)化为十进制数,结果为83.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知命题:
①将一组数据中的每个数都变为原来的2倍,则方差也变为原来的2倍;
②命题“?x∈R,x2+x+1<0”的否定是“?x∈R,x2+x+1<0”;
③在△ABC中,若A>B,则sinA<sinB;
④在正三棱锥S-ABC内任取一点P,使得VP-ABC<$\frac{1}{2}$VS-ABC的概率是$\frac{7}{8}$;
⑤若对于任意的n∈N+,n2+(a-4)n+3+a≥0恒成立,则实数a的取值范围是[$\frac{1}{3}$,+∞).
以上命题中正确的是③④⑤(填写所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=tan($\frac{π}{6}$-x)的定义域是{x|x$≠-\frac{π}{3}-kπ,k∈Z$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y=\frac{1}{2}cos2x$的周期为(  )
A.πB.C.D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C的圆心为原点O,且与直线$x+y+4\sqrt{3}=0$相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA、PB,切点为A、B,试问,直线AB是否过定点,若过定点,请求出;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足x2+y2≤2,则满足到直线x-y+2$\sqrt{2}$=0的距离d∈[1,3]的点P概率为(  )
A.$\frac{1}{2}$-$\frac{1}{π}$B.$\frac{1}{2}$+$\frac{1}{π}$C.$\frac{1}{4}$-$\frac{1}{2π}$D.$\frac{1}{4}$+$\frac{1}{2π}$

查看答案和解析>>

同步练习册答案