精英家教网 > 高中数学 > 题目详情
若变量x,y满足约束条件
3≤2x+y≤9
6≤x-y≤9
则z=x+2y的最小值为
 
分析:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=-
1
2
x+
z
2
,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.
解答:精英家教网解:在坐标系中画出约束条件的可行域,
得到的图形是一个平行四边形,
目标函数z=x+2y,
变化为y=-
1
2
x+
z
2

当直线沿着y轴向上移动时,z的值随着增大,
当直线过A点时,z取到最小值,
由y=x-9与2x+y=3的交点得到A(4,-5)
∴z=4+2(-5)=-6
故答案为:-6
点评:本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台一模)若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
则w=log3(2x+y)的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y 满足约束条件
x+y≥0
x-y≥0
3x+y-4≤0
,则4x+y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台三模)已知向量
a
=(x-z,1),
b
=(2,y+z)
,且
a
b
,若变量x,y满足约束条件
x≥-1
y≥x
3x+2y≤5
则z的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)若变量x,y满足约束条件
2≤x+y≤4
1≤x-y≤2
,则z=2x+4y的最小值为(  )

查看答案和解析>>

同步练习册答案