精英家教网 > 高中数学 > 题目详情
5.已知A(3,5),O为坐标原点,则与OA垂直的直线斜率为-$\frac{3}{5}$.

分析 先求出直线OA的斜率,由此能求出与OA垂直的直线斜率.

解答 解:∵A(3,5),O为坐标原点,
∴直线OA的斜率为kOA=$\frac{5}{3}$,
∴与OA垂直的直线斜率为k=-$\frac{3}{5}$.
故答案为:-$\frac{3}{5}$.

点评 本题考查直线的斜率的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.(Ⅰ)已知中心在原点的椭圆C的右焦点F(1,0),离心率等于$\frac{1}{2}$,求椭圆C的方程;
(Ⅱ)求与双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$有共同的渐近线,且过点$(-3,2\sqrt{3})$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{{9}^{x}-{3}^{x}}$.
(1)求f(x)定义域和值域.
(2)若f(x)>$\sqrt{6}$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},则图中阴影部分所表示的集合为(  )
A.{0,1}B.{1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=ln(x+1)-$\frac{1}{2}$x2-x+5的单调递增区间为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:?x∈R,3x<4x,命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是(  )
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.任意函数f(x),x∈D,可按如图构造一个数列发生器,记由数列发生器产生数列{xn}.若定义函数f(x)=$\frac{4x-2}{x+1}$,且输入x0=$\frac{49}{65}$,则数列{xn}的项构成的集合为(  )
A.{$\frac{11}{19}$,$\frac{1}{5}$}B.{$\frac{11}{19}$,$\frac{1}{5}$,-$\frac{1}{2}$}C.{$\frac{11}{19}$,$\frac{1}{5}$,-1}D.{$\frac{11}{19}$,$\frac{1}{5}$,-$\frac{3}{4}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x2+2ax,x∈[-5,5].
(1)若y=f(x)-2x是偶函数,求f(x)的最大值和最小值;
(2)如果f(x)在[-5,5]上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=logax+b,f(x)恒过点(1,1),且f(e)=2.
(1)求f(x)的解析式;
(2)若f(x)≤kx对?x>0都成立,求实数k的取值范围;
(3)当x2>x1>1时,证明:x2(x1-1)lnx2>x1(x2-1)lnx1

查看答案和解析>>

同步练习册答案