精英家教网 > 高中数学 > 题目详情

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是(  )

A.PB⊥AD

B.平面PAB⊥平面PBC

C.直线BC∥平面PAE

D.直线PD与平面ABC所成的角为45°

 

D

【解析】∵AD与PB在平面ABC内的射影AB不垂直,∴A不正确;易知平面PAB⊥平面PAE,∴B不正确;∵BC∥AD,∴∠PDA=45°,∴D正确.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-3圆的方程(解析版) 题型:选择题

已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为(  )

A.8 B.-4 C.6 D.无法确定

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:填空题

已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,则直线AE与平面ABC1D1所成角的正弦值为________.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-6空间向量及运算(解析版) 题型:选择题

△ABC的顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD等于(  )

A.5 B. C.4 D.2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:解答题

在如图所示的几何体中,正方形ABCD和矩形ABEF所在的平面互相垂直,M为AF的中点,BN⊥CE.

(1)求证:CF∥平面MBD;

(2)求证:CF⊥平面BDN.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的(  )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是(  )

A.EH∥FG

B.四边形EFGH是矩形

C.Ω是棱柱

D.Ω是棱台

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:填空题

若a,b,c是不全相等的正数,给出下列判断:

①(a-b)2+(b-c)2+(c-a)2≠0;

②a>b与a<b及a=b中至少有一个成立;

③a≠c,b≠c,a≠b不能同时成立.

其中判断正确的是________.

 

查看答案和解析>>

同步练习册答案