精英家教网 > 高中数学 > 题目详情

如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是(  )

A.EH∥FG

B.四边形EFGH是矩形

C.Ω是棱柱

D.Ω是棱台

 

D

【解析】若FG不平行于EH,则FG与EH相交,交点必然在B1C1上,与EH∥B1C1矛盾,所以FG∥EH;由EH⊥平面A1ABB1,得到EH⊥EF,可以得到四边形EFGH为矩形,将Ω从正面看过去,就知道是一个五棱柱,C正确;D没能正确理解棱台的定义与题中的图形.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-1直线的倾斜角与斜率、直线方程(解析版) 题型:选择题

直线xcosα+y+2=0的倾斜角的取值范围是(  )

A.[-] B.[]

C.[0,]∪[,π) D.[0,]∪[,π]

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是(  )

A.PB⊥AD

B.平面PAB⊥平面PBC

C.直线BC∥平面PAE

D.直线PD与平面ABC所成的角为45°

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

下列命题正确的是(  )

A.若两条直线和同一个平面所成的角相等,则这两条直线平行

B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D.若两个平面都垂直于第三个平面,则这两个平面平行

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:解答题

如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-3空间点直线平面之间的位置关系(解析版) 题型:选择题

已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是(  )

A.α⊥β,且m?α B.m∥n,且n⊥β

C.α⊥β,且m∥α D.m⊥n,且n∥β

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:填空题

如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-7数学归纳法(解析版) 题型:选择题

用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开(  )

A.(k+3)3 B.(k+2)3

C.(k+1)3 D.(k+1)3+(k+2)3

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-4基本不等式(解析版) 题型:选择题

设x,y∈R,a>1,b>1,若ax=by=2,a+=4,则的最大值为(  )

A.4 B.3 C.2 D.1

 

查看答案和解析>>

同步练习册答案