精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln
1+2x
+mx

(I)若f(x)为定义域上的单调函数,求实数m的取值范围;
(II)当m=1,且1≥a>b≥0时,证明:
4
3
f(a)-f(b)
a-b
<2
分析:(I)整理函数求出函数的定义域,对函数求导,根据定义域得到函数的导函数小于0不能恒成立,所以只能整理导函数大于0恒成立,分离参数得到结论.
(II)当m=1时,构造新函数g(x),对新函数求导,得到新函数在[0,1]上递增,利用递增函数的定义,写出递增所满足的条件,在构造新函数h(x),同理得到函数在[0,1]上递减,得到递减的条件,得到结论.
解答:解:(I)f(x)=ln
1+2x
+mx=
1
2
ln(1+2x)+mx(x>-
1
2
)

f′(x)=
1
1+2x
+m

x>-
1
2
1
1+2x
>0
,故不存在实数m,
使f′(x)=
1
1+2x
+m<0
x>-
1
2
恒成立,
f′(x)=
1
1+2x
+m≥0
x>-
1
2
恒成立得,
m≥-
1
1+2x
x>-
1
2
恒成立
-
1
1+2x
<0,故m≥0
经检验,当m≥0时,f′(x)=
1
1+2x
+m>0
x>-
1
2
恒成立
∴当m≥0时,f(x)为定义域上的单调递增函数.
(II)证明:当m=1时,令g(x)=f(x)-
4
3
x=
1
2
ln(1+2x)-
1
3
x

g′(x)=
1
1+2x
-
1
3
=
2(1-x)
3(1+2x)

在[0,1]上总有g′(x)≥0,
即g(x)在[0,1]上递增
∴当1≥a>b≥0时,g(a)>g(b),
f(a)-
4
3
a>f(b)-
4
3
b?
f(a)-f(b)
a-b
4
3

h(x)=f(x)-2x=
1
2
ln(1+2x)-x

由(2)知它在[0,1]上递减,
∴h(a)<h(b)
f(a)-2a<f(b)-2b?
f(a)-f(b)
a-b
<2

综上所述,当m=1,且1≥a>b≥0时,
4
3
f(a)-f(b)
a-b
<2
点评:本题考查函数的单调性与导数的关系,考查根据需要构造新函数,考查递增函数的定义,考查函数的恒成立问题,考查解决问题的能力和分析问题的能力,是一个中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案