精英家教网 > 高中数学 > 题目详情

如图,三棱柱ABC-A1B1C1的所有棱长都是2,AA1⊥平面ABC,D,E分别是AC,CC1的中点.

(1)求证:AE⊥平面A1BD.

(2)求二面角D-BA1-A的余弦值.

(3)求点B1到平面A1BD的距离.

 

(1)见解析 (2) (3)

【解析】AA1⊥平面ABC可知,平面ABC⊥平面ACC1A1,故可考虑建立空间直角坐标系解决问题.

【解析】
(1)D为原点,DA所在直线为x,DAC的垂线为y,DB所在直线为z轴建立空间直角坐标系如图,

A(1,0,0),C(-1,0,0),E(-1,-1,0),A1(1,-2,0),C1(-1,-2,0),B(0,0,),B1(0,-2,),

=(-2,-1,0),=(-1,2,0),=(0,0,-).·=2-2+0=0,

AEA1D,·=0,AEBD.

A1DBD相交于D,AE⊥平面A1BD.

(2)设平面DA1B的一个法向量为n1=(x1,y1,z1),

n1=(2,1,0).

设平面AA1B的一个法向量为n2=(x2,y2,z2),

易得=(-1,2,),=(0,2,0),

则由

n2=(3,0,).cos<n1,n2>==.

故二面角D-BA1-A的余弦值为.

(3)=(0,2,0),平面A1BD的法向量取n1=(2,1,0),则点B1到平面A1BD的距离为d=||=.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十四第七章第三节练习卷(解析版) 题型:选择题

如图,正三棱柱ABC-A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,EF与侧棱C1C所成的角的余弦值是(  )

(A) (B) (C) (D)2

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十五第七章第四节练习卷(解析版) 题型:解答题

如图所示,在棱长为1的正方体ABCD-A1B1C1D1,MAD1上移动,NBD上移动,D1M=DN=a(0<a<),连接MN.

(1)证明对任意a(0,),总有MN∥平面DCC1D1.

(2)a为何值时,MN的长最小?

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十二第七章第一节练习卷(解析版) 题型:解答题

已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.

(1)画出该三棱锥的直观图.

(2)求出侧视图的面积.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十二第七章第一节练习卷(解析版) 题型:选择题

如图,ABC为正三角形,AA'BB'CC',CC'⊥平面ABC3AA'=BB'=CC'=AB,则多面体ABC-A'B'C'的正视图是( )

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则点O到平面ABC1D1的距离为    .

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:选择题

已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),的夹角θ的大小是(  )

(A) (B)π (C) (D)π

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:选择题

如图是某几何体的三视图,其中正视图和侧视图是半径为1的半圆,俯视图是个圆,则该几何体的全面积是(  )

(A)π   (B)2π   (C)3π   (D)4π

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十 第六章第六节练习卷(解析版) 题型:选择题

已知函数f(x)R上的单调增函数且为奇函数,数列{an}是等差数列,a3>0,f(a1)+f(a3)+f(a5)的值(  )

(A)恒为正数 (B)恒为负数

(C)恒为0 (D)可正可负

 

查看答案和解析>>

同步练习册答案