精英家教网 > 高中数学 > 题目详情
已知a和b是任意非零实数.
(1)求
|2a+b|+|2a-b|
|a|
的最小值.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:(1)由条件利用绝对值三角不等式求得
|2a+b|+|2a-b|
|a|
的最小值.
(2)由条件利用绝对值三角不等式|2+x|+|2-x|≤4,再根据绝对值的意义可得|2+x|+|2-x|≥4,从而得到|2+x|+|2-x|=4,由此利用绝对值的意义求得x的范围.
解答: 解:(1)∵
|2a+b|+|2a-b|
|a|
=|
2a+b
a
|+|
2a-b
a
|=|2+
b
a
|+|2-
b
a
|≥|(2+
b
a
)+(2-
b
a
)|=4,
所以 
|2a+b|+|2a-b|
|a|
的最小值为4.
(2)∵|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|,不等式|a+b|+|a-b|≥|a|(|2+x|+|2-x|)恒成立,
∴4|a||≥|a|(|2+x|+|2-x|),即|2+x|+|2-x|≤4.
而|2+x|+|2-x|表示数轴上的x对应点到-2、2对应点的距离之和,它的最小值为4,
故|2+x|+|2-x|=4,∴-2≤x≤2,
即实数x的取值范围为:[-2,2].
点评:本题主要考查绝对值的意义,绝对值不等式的解法,绝对值三角不等式,函数的恒成立问题,体现了等价转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
x
1
(sint-lgt)dt(x>1),则f(x)的极大值点的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点O(0,0),A(-2,a)(a∈R是常数),动点P满足
PO
PA
=3.
(1)求动点P的轨迹;
(2)若直线l:x+2y-2=0上有且仅有一点Q,使
QO
QA
=3,求常数a的值;并求此时直线l与直线OA夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某耗水量较大的企业为积极响应政府号召,对生产设备进行技术改造,以达到节约用水的目的.下表提供了该企业节约用水技术改造后生产某产品过程中记录的产量x(吨)与相应的生产用水y(吨)的几组对照数据:
x 2 3 4 5
y 3 3.5 4.7 6
(1)请根据表中提供的数据,计算
.
x
.
y
的值,已知x,y之间呈线性相关关系,求y关于x的线性回归方程
y
=
b
x+
a
,并解释
b
的含义;
(参考数据:
4
i=1
xi2=54,
4
i=1
xiyi=65.3)
(2)已知该厂技术改造前100吨该产品的生产用水为130吨,试根据(1)中求出的线性回归方程,预测技术改造后生产100吨该产品的用水量比技术改造前减少了多少吨?

查看答案和解析>>

科目:高中数学 来源: 题型:

把一枚骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,求x2-ax+b=0有解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若f(α-
π
3
)=4cosα,求
cos(
π
2
-α)sin(π+α)
cos(4π+α)sin(3π-α)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(2,-1).
(Ⅰ)求直线AB的方程,并判断直线AB的倾斜角是锐角还是钝角;
(Ⅱ)若点P在x轴上,且∠ABP=90°,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
y-3≤0
3x+y-6≥0
x-y-2≤0
,则目标函数z=y+2x的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间四边形ABCD的两条对边AD与BC成60°角,且AD=4cm,BC=6cm,则空间四边形ABCD四边中构成的平形四边形的面积为
 

查看答案和解析>>

同步练习册答案