精英家教网 > 高中数学 > 题目详情

【题目】将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1

观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x7项的系数为75,则实数a的值为

【答案】1
【解析】解:由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1, 所以(1+ax)(x2+x+1)5的展开式中,x7项的系数为30+45a=75,
所以a=1.
所以答案是:1.
【考点精析】本题主要考查了归纳推理的相关知识点,需要掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx
(1)当a=﹣1时,求函数的单调区间和极值
(2)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰直角△ABC中,AC=BC,D在AB边上且满足: ,若∠ACD=60°,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+b)lnx,g(x)=alnx+ ﹣x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)> ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的一个焦点为F(3,0),其左顶点A在圆O:x2+y2=12上.
(1)求椭圆C的方程;
(2)直线l:x=my+3(m≠0)交椭圆C于M,N两点,设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴的交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 已知a1=9,a2为整数,且Sn≤S5
(1)求{an}的通项公式;
(2)设数列 的前n项和为Tn , 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》之后,人们学会了用数列的知识来解决问题.公元5世纪中国古代内容丰富的数学著作《张丘建算经》卷上有题为:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”.利用这种思想设计的一个程序框图如图,若输出的S值为九匹三丈(一匹=4丈,一丈=10尺),则框图中d为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案