精英家教网 > 高中数学 > 题目详情
3.过P(8,3)作双曲线9x2-16y2=144的弦AB,且P为弦AB中点,那么直线AB的方程为3x-2y-18=0.

分析 设出A,B的坐标,代入双曲线方程,两式相减,根据中点的坐标可知x1+x2和y1+y2的值,进而求得直线AB的斜率,根据点斜式求得直线的方程.

解答 解:设A(x1,y1),B(x2,y2),
由P为弦AB中点,
可得x1+x2=16,y1+y2=6,
又9x12-16y12=144,9x22-16y22=144,
相减可得,9(x1+x2)(x1-x2)-16(y1+y2)(y1-y2)=0,
即为9(x1-x2)-6(y1-y2)=0,
可得kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{3}{2}$,
则直线的方程为y-3=$\frac{3}{2}$(x-8),即3x-2y-18=0.
故答案为:3x-2y-18=0.

点评 涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知抛物线E:y2=2px(p>0)的焦点F恰好与圆C:x2+y2-2x=0的圆心重合,过焦点F的直线l与抛物线E交于不同的两点A,B.
(Ⅰ)求抛物线E的方程;
(Ⅱ)若O是坐标原点,试问$\overrightarrow{OA}$•$\overrightarrow{OB}$是否为一定值?若是定值,请求出,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.因为a、b∈R+,a+b≥2$\sqrt{ab}$(大前提),x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$(小前提),所以x+$\frac{1}{x}$≥2(结论),以上推理过程中(  )
A.完全正确B.大前提错误C.小前提错误D.结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={y|y=x2+1,x∈R},N={y|y=x3+1,x∈R},则M∩N等于(  )
A.[1,+∞)B.[-1,+∞)C.[1,2)D.[-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面内,设三角形ABC的边长为a,b,c,面积为S,则其内切圆半径r可由关系式S=$\frac{1}{2}$(a+b+c)r求出,请类比此方法解决下述问题:在空间中,已知四面体ABCD中,AB=8,AC=BC=5,AD=BD=$\sqrt{41}$,CD=4,则此四面体内切球(位于四面体内且与各面相切的球)的半径R=$\frac{8}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=$\frac{1}{3}a{x^3}+\frac{1}{2}(b-8){x^2}$+2x(a>0,b≥0)在区间[1,2]上单调递减,则a(b-1)的最大值为(  )
A.4B.$\frac{19}{4}$C.$\frac{9}{2}$D.$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax2-(b+1)xlnx-b,曲线y=f(x)在点P(e,f(e))处的切线方程为2x+y=0.
(1)求f(x)的解析式;
(2)研究函数f(x)在区间(0,e4]内的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)满足:f(x)+2f′(x)>0,那么下列不等式成立的是(  )
A.$f(1)>\frac{f(0)}{{\sqrt{e}}}$B.$f(2)<\frac{f(0)}{e}$C.$f(1)>\sqrt{e}f(2)$D.f(0)>e2f(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟订的价格进行试销得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)928283807568
(I)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.其中$\widehat{a}$=250
(Ⅱ)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元每件,为使工厂获得最大利润,该产品的单价应定为多少元?

查看答案和解析>>

同步练习册答案