精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆C (a>b>0)的离心率为,右焦点F到右准线的距离为3.

(1)求椭圆C的方程;

(2)过点F作直线l (不与x 轴重合)和椭圆C交于M N两点,设点.

①若的面积为,求直线l方程;

②过点M作与)轴垂直的直线l"和直线NA交于点P,求证:点P在一条定直线上.

【答案】(1);(2)①,②见解析

【解析】

1)由椭圆离心率的定义,右焦点与右准线的距离求得椭圆方程;

2)用设而不求的求直线方程,用三角形面积得直线方程,分类讨论可得.

解:

1)由题意:解得:,所以椭圆的方程为

(2)①当直线l斜率不存在时,方程为,此时,不合题意;

当直线斜率存在时,设方程为.

,消去y得:..

由题意,

所以

因为 的面积为

所以,即,解得

所以直线的方程为.

②当直线的斜率不存在时,直线NA的方程为:.,得

所以直线的交点坐标

当直线的斜率存在时,由①知,

由直线的方程为:

,得

所以直线的交点的坐标为

综上所述,点在一条定直线上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为2为体对角线上的一点,且,现有以下判断:①;②若平面,则;③周长的最小值是;④若为钝角三角形,则的取值范围为,其中正确判断的序号为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧棱底面 且点分别为的中点.

1)求证: 平面

2求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆,圆.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)设分别为上的点,若为等边三角形,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,设,若对所有的都有,则称互为零点相邻函数”.若函数互为零点相邻函数,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧.,矩形的面积为S.

1)求矩形的面积S关于变量的函数关系式;

2)求为何值时,矩形的面积S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面与平面所成的角依次是依次是上的点,其中.

1)求直线与平面所成的角(结果用反三角函数值表示);

2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C的焦点为F,经过点F的直线与抛物线交于AB两点.

(1),求线段中点M的轨迹方程;

(2)若直线AB的方向向量为,当焦点为时,求的面积;

(3)M是抛物线C准线上的点,求证:直线的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的函数,若存在,使得单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间称为含峰区间,其含峰区间的长度为:

(1)判断下列函数中,哪些是“上的单峰函数”?若是,指出峰点;若不是,说出原因;

(2)若函数上的单峰函数,求实数的取值范围;

(3)若函数是区间上的单峰函数,证明:对于任意的,若,则为含峰区间;若,则为含峰区间;试问当满足何种条件时,所确定的含峰区间的长度不大于0.6.

查看答案和解析>>

同步练习册答案