精英家教网 > 高中数学 > 题目详情

【题目】20181024日,世界上最长的跨海大桥一港珠澳大桥正式通车在一般情况下,大桥上的车流速度单位:千米是车流密度单位:辆千米的函数当桥上的车流密度达到220千米时,将造成堵塞,此时车流速度为0;当车流密度不超过20千米时,车流速度为100千米时,研究表明:当时,车流速度v是车流密度x的一次函数.

时,求函数的表达式;

当车流密度x为多大时,车流量单位时间内通过桥上某观测点的车辆数,单位:辆可以达到最大?并求出最大值.

【答案】(Ⅰ)(Ⅱ)车流密度为110千米时,车流量最大,最大值为6050时.

【解析】

利用待定系数法求出当时的函数解析式得出结论;

分段求出函数的最大值即可得出的最大值.

解:时,设,则

解得:

时,

时,

时,的最大值为

车流密度为110千米时,车流量最大,最大值为6050时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,且过定点M(1, ).
(1)求椭圆C的方程;
(2)已知直线l:y=kx﹣ (k∈R)与椭圆C交于A、B两点,试问在y轴上是否存在定点P,使得以弦AB为直径的圆恒过P点?若存在,求出P点的坐标和△PAB的面积的最大值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题是  

A. 任意三点确定一个平面

B. 三条平行直线最多确定一个平面

C. 不同的两条直线均垂直于同一个平面,则这两条直线平行

D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l1ax3y60l22x(a1)y60与圆Cx2y22xb21(b>0)的位置关系是“平行相交”,则实数b的取值范围为 (   )

A. ( ) B. (0 )

C. (0 ) D. ( )(,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一圆与直线相切于点,且经过点,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将5名报名参加运动会的同学分别安排到跳绳、接力,投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有种不同的方案;若每项比赛至少要安排一人时,则共有种不同的方案,其中的值为( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题:

若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

垂直于同一直线的两条直线相互平行;

若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.

其中,为真命题的是  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当点的图像上移动时,点在函数的图像上移动,

(1)若点的坐标为,点也在图像上,求的值。

(2)求函数的解析式。

(3)当,令,求上的最值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数的定义域为[-1,1],当时,

(1)求函数上的值域;

(2)若时,函数的最小值为-2,求实数λ的值。

查看答案和解析>>

同步练习册答案