精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,为棱的中点.

1)求证:平面

2)试判断与平面是否平行?并说明理由.

【答案】(1)见解析;(2)不平行,证明见解析

【解析】

1)可结合中位线定理证明,取PC的中点F,连接EFBF,先证明四边形为平行四边形,可得,即可得证;

(2)可采用反证法,假设与平面平行,先证中点,再通过相似三角形可得,即证出矛盾,故不成立

证明:(1)取PC的中点F,连接EFBF

,且

又因为

所以,且

所以四边形为平行四边形,

又因为平面平面

所以平面.

2与平面不平行.

假设

,连结

则平面平面

平面 所以.

所以,在中有

的中点可得,即.

因为,所以,这与矛盾,

所以假设错误,与平面不平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为奇函数,为常数.

1)求的值

2)判断函数上的单调性,并说明理由;

3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造. 算筹实际上是一根根同样长短的小木棍,用算筹表示数1~9的方法如图:例如:163可表示为“”,27可表示为“”.现有6根算筹,用来表示不能被10整除的两位数,算筹必须用完,则这样的两位数的个数为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两所学校进行同一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:

班级与成绩列联表

优秀

不优秀

总计

甲队

80

40

120

乙队

240

200

240

合计

320

240

560

(1)能否在犯错误的概率不超过0.025的前提下认为成绩与学校有关系;

(2)采用分层抽样的方法在两所学校成绩优秀的320名学生中抽取16名同学.现从这16名同学中随机抽取3名运同学作为成绩优秀学生代表介绍学习经验,记这3名同学来自甲学校的人数为,求的分布列与数学期望.附:

参考数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影为BC的中点,D是B1C1的中点.证明:A1D⊥平面A1BC;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在报刊与网络媒体上共投放30万元的广告费,根据计划,报刊与网络媒体至少要投资4万元.根据市场前期调研可知,在报刊上投放广告的收益与广告费满足,在网络媒体上投放广告的收益与广告费满足,设在报刊上投放的广告费为(单位:万元),总收益为(单位:万元).

(1)当在报刊上投放的广告费是18万元时,求此时公司总收益;

(2)试问如何安排报刊、网络媒体的广告投资费,才能使总收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)曲线在点处的切线斜率为,求该切线方程;

(2)若函数在区间上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上的椭圆,离心率,且椭圆过点.

(1)求椭圆的方程;

(2)设椭圆左、右焦点分别为,过的直线与椭圆交于不同的两点,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.

)求的分布列;

)若要求,确定的最小值;

)以购买易损零件所需费用的期望值为决策依据,在之中选其一,应选用哪个?

查看答案和解析>>

同步练习册答案