精英家教网 > 高中数学 > 题目详情
(2012•烟台一模)函数y=
ln|x|
x
的图象大致是(  )
分析:利用函数的奇偶性可排除B,再通过导数研究函数的单调性进一步排除,即可得到答案.
解答:解:∵y=f(-x)=
ln|-x|
-x
=-f(x),
∴y=f(x)=
ln|x|
x
为奇函数,
∴y=f(x)的图象关于原点成中心对称,可排除B;
又x>0时,f(x)=
lnx
x
,f′(x)=
1-lnx
x2

∴x>e时,f′(x)<0,f(x)在(e,+∞)上单调递减,
0<x<e时,f′(x)>0,f(x)在(0,e)上单调递增,故可排除A,D,而C满足题意.
故选C.
点评:本题考查函数的图象,考查函数的奇偶性与单调性,着重考查导数的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; 
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
则w=log3(2x+y)的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为(  )

查看答案和解析>>

同步练习册答案