精英家教网 > 高中数学 > 题目详情
(2012•烟台一模)已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )
分析:根据基本不等式进行讨论,可得:“a=1是x>0,x+
a
x
≥2的充分不必要条件”,命题p是假命题.再根据一元二次不等式的解法,得到命题q:“存在x0∈R,x02+x0-2>0”是真命题.由此不难得出正确的答案.
解答:解:对于p,当a=1时,x+
1
x
≥2
x•
1
x
=2,在x>0时恒成立,
反之,若x>0,x+
a
x
≥2恒成立,则2
x•
a
x
≥2,即
a
≥1
,可得a≥1
因此,“a=1是x>0,x+
a
x
≥2的充分不必要条件”,命题p是假命题.
对于q,∵在x0<-1或x0>2时x02+x0-2>0才成立,
∴“存在x0∈R,x02+x0-2>0”是真命题,即命题q是真命题.
综上,命题p为假命题而命题q为真命题,所以命题“(¬p)∧q”是真命题
故选C
点评:本题以两个含有不等式的命题真假的判断为载体,着重考查了一元二次不等式的解法、基本不等式和复合命题的真假判断等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台一模)函数y=
ln|x|
x
的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; 
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
则w=log3(2x+y)的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为(  )

查看答案和解析>>

同步练习册答案