精英家教网 > 高中数学 > 题目详情

已知函数为常数,),且数列是首项为,公差为的等差数列.
(1) 若,当时,求数列的前项和;                      
(2)设,如果中的每一项恒小于它后面的项,求的取值范围.

(1)  (2)

解析试题分析:(1) 由题意,即,   1分
.  ……2分

时,.         3分
,      ①
    ②    4分
①-②,得 
 6分
   7分
(2)由(1)知,,要使对一切成立,
对一切成立.          ……8分
,对一切恒成立,
只需,   10分
单调递增,∴当时,.   12分
,且, ∴.     13分
综上所述,存在实数满足条件.    14分
考点:本题考查了数列的求和及不等式的证明
点评:数列的通项公式及应用是数列的重点内容,数列的大题对逻辑推理能力有较高的要求,在数列中突出考查学生的理性思维,这是近几年新课标高考对数列考查的一个亮点,也是一种趋势.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

将边长为米的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少米?方盒的最大容积为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入固定成本流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(1) 
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求(lg2)2+lg2·lg50+lg25的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得
(3x1-x2)(x1-3x2)=-80成立.求实数a的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数有两个零点,且最小值是,函数的图象关于原点对称;
(1)求的解析式;
(2)若在区间上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,若对一切恒成立.求实数 的取值范围.(16分)

查看答案和解析>>

同步练习册答案