(本小题满分12分)
已知函数,若对一切恒成立.求实数 的取值范围.(16分)
科目:高中数学 来源: 题型:解答题
已知函数(为常数,),且数列是首项为,公差为的等差数列.
(1) 若,当时,求数列的前项和;
(2)设,如果中的每一项恒小于它后面的项,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式.
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?
(注:市场售价和种植成本的单位:元/百千克,时间单位:天)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
经过长期的观测得到:在交通繁忙时段,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为.
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?
(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分13分)设函数满足:都有,且时,取极小值
(1)的解析式;
(2)当时,证明:函数图象上任意两点处的切线不可能互相垂直;
(3)设, 当时,求函数的最小值,并指出当取最小值时相应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知二次函数,关于的不等式的解集为,其中为非零常数.设.
(1)求的值;
(2)R如何取值时,函数存在极值点,并求出极值点;
(3)若,且,求证:N
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)某企业拟投资、两个项目,预计投资项目万元可获得利润
万元;投资项目万元可获得利润万元.若该企业用40
万元来投资这两个项目,则分别投资多少万元能获得最大利润?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com