精英家教网 > 高中数学 > 题目详情

设函数的定义域为,对任意的实数都有;当时,,且.(1)判断并证明上的单调性;
(2)若数列满足:,且,证明:对任意的

(1)单调递增(2),再利用.

解析试题分析:(1)上单调递增,证明如下: 设任意,且,∵,∴,∴
,∴上单调递增.  
(2)在中,令,得.令
,∴.令,得,即

下面用数学归纳法证明:   
①当时,,不等式成立;
②假设当时,不等式成立,即,则∵上单调递增,
,∴,即当时不等式也成立.
综上①②,由数学归纳法原理可知对任意的
考点:数学归纳法;抽象函数及其应用;数列与函数的综合
点评:本题考查函数的单调性,考查数学归纳法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

经市场调查:生产某产品需投入年固定成本为3万元,每生产万件,需另投入流动成本为万元,在年产量不足8万件时,(万元),在年产量不小于8万件时,(万元). 通过市场分析,每件产品售价为5元时,生产的商品能当年全部售完.
(1)写出年利润(万元)关于年产量(万件)的函数解析式;
(注:年利润=年销售收入固定成本流动成本)
(2)年产量为多少万件时,在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数有两个零点,且最小值是,函数的图象关于原点对称;
(1)求的解析式;
(2)若在区间上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)设是定义在实数集R上的函数,满足,且对任意实数a,b有
(Ⅱ)设函数满足

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(Ⅰ)若售报亭一天购进270份报纸,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式.
(Ⅱ)售报亭记录了100天报纸的日需求量(单位:份),整理得下表:

日需求量
240
250
260
270
280
290
300
 频数
10
20
16
16
15
13
10
以100天记录的需求量的频率作为各销售量发生的概率.
(1)若售报亭一天购进270份报纸,表示当天的利润(单位:元),求的数学期望;
(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数 且关于的方程上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,若对一切恒成立.求实数 的取值范围.(16分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数的定义域是,且满足,如果对于0<x<y,都有
(1)求
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

同步练习册答案