精英家教网 > 高中数学 > 题目详情
一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于点P, 直线PF(F为椭圆的左焦点)是该圆的切线,则椭圆的离心率为                    (   )
A.B.    C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆,焦点为,椭圆上的点,则的面积是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图,已知椭圆(a>b>0)的左、右焦点分别为,短轴两个端点为.A、B且四边形是边长为2的正方形.

(I)求椭圆的方程;
(II)若C、D分别是椭圆长轴的左、右端点,动点M满足MD丄CD,连结CM,交椭圆于点P.证明为定值;
(III)在(II)的条件下,试问X轴上是否存在异于点C的定点Q,使得以MP为直径的圆恒过直线DP,MQ的交点.若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点F1,F2,短轴长为8,离心率为,过F1的直线交椭圆于A、B两点,则的周长为(  )
A、10           B、20           C、30          D、40

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点为,且,弦AB过点,则△的周长为__________ 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求以椭圆的顶点为焦点,焦点为顶点的双曲线方程,并求出其离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C:的左、右焦点分别为F1 ,F2,若椭圆上总存在点P,使得点P在以F1,F2为直径的圆上.
(1) 求椭圆离心率的取值范围;
(2) 若AB是椭圆C的任意一条不垂直x轴的弦,M为弦的中点,且满足
(其中分别表示直线AB、OM的斜率,0为坐标原点),求满足题意的椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(c>0)的准线与x轴相交于点A,,过点A的直线与椭圆相交于P,Q两点,
(1)求椭圆的离心率及方程。
(2)若·,求直线PQ的方程。
(3)设,过点P且平行于准线l的直线与椭圆相交于另一点M,证明

查看答案和解析>>

同步练习册答案