精英家教网 > 高中数学 > 题目详情
19.已知集合A={x|x2-2x≤0},B={x|x<m},若A⊆B,则实数m的取值范围是(  )
A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,0]

分析 由已知中,集合A={x|x2-2x≤0},解二次不等式求出集合A,再由A⊆B,即可得到实数m的取值范围.

解答 解:集合A={x|x2-2x≤0}=[0,2]
∵B={x|x<m},A⊆B,
∴m>2.
故选:B.

点评 本题考查的知识点是集合关系中的参数取值问题,其中根据集合包含关系,构造出关于参数m的不等式组是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{2^{-x}}-1,x≤0\\ f(x-1),x>0\end{array}$,若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,1]C.(0,1)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用0,1,2,3,4,5这六个数字
(1)可以组成多少个数字不重复的三位数?
(2)可以组成多少个数字不重复的三位奇数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人;甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法:①应该采用分层抽样法;②高一、高二年级应分别抽取100人和135人;③乙被抽到的可能性比甲大;④该问题中的总体是高一、高二年级全体学生的视力情况.其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.实数a,b满足 a>0,b>1,a+b=$\frac{3}{2}$,则$\frac{2}{a}$+$\frac{1}{b-1}$的最小植为(  )
A.1+2$\sqrt{2}$B.2+4$\sqrt{2}$C.3+2$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设已知T时矩阵$[\begin{array}{l}{a}&{c}\\{b}&{0}\end{array}]$所对应的变换(其中b>0),A(1,0),且T(A)=P,若△POA的面积为$\sqrt{3}$,∠POA=$\frac{π}{3}$,则a+b=2+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y为正数,且x+y=2,则$\frac{2}{x}$+$\frac{1}{y}$的最小值为(  )
A.2B.$\frac{3}{2}$+$\sqrt{2}$C.$\sqrt{2}$D.2-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已函数f(x)=sin($\frac{7π}{6}-2x$)-2sin2x+1(x∈R),
(1)求函数f(x)的最小正周期及单凋递增区间;
(2)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知函数f(x)的图象经过点(A,$\frac{1}{2}$),b,a,c成等差数列,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=log${\;}_{2}^{2}$x+5log2x+1,若f(α)=f(β)=0,且α≠β,求αβ的值.

查看答案和解析>>

同步练习册答案