| A. | 1+2$\sqrt{2}$ | B. | 2+4$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 6+4$\sqrt{2}$ |
分析 根据条件,可以考虑用基本不等式求最小值:根据条件得到,$a+(b-1)=\frac{1}{2}$,从而$\frac{2}{a}+\frac{1}{b-1}=\frac{a+(b-1)}{\frac{a}{4}}+\frac{a+(b-1)}{\frac{b-1}{2}}$,到这便可以看出能够用上基本不等式了,从而便可得出$\frac{2}{a}+\frac{1}{b-1}$的最小值.
解答 解:$a+b=a+(b-1)+1=\frac{3}{2}$;
∴$a+(b-1)=\frac{1}{2}$,a>0,b>1,b-1>0;
∴$\frac{2}{a}+\frac{1}{b-1}=\frac{\frac{1}{2}}{\frac{a}{4}}+\frac{\frac{1}{2}}{\frac{b-1}{2}}=\frac{a+(b-1)}{\frac{a}{4}}+\frac{a+(b-1)}{\frac{b-1}{2}}$=$4+\frac{4(b-1)}{a}+\frac{2a}{b-1}+2≥4+2\sqrt{8}+2$=$6+4\sqrt{2}$;
∴$\frac{2}{a}+\frac{1}{b-1}$的最小值为6$+4\sqrt{2}$.
故选D.
点评 考查函数最小值的概念,基本不等式用于求最值的方法,注意应用基本不等式所具备的条件.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{6}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2,+∞) | B. | (2,+∞) | C. | (-∞,0) | D. | (-∞,0] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | -10 | C. | 4 | D. | -4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com