精英家教网 > 高中数学 > 题目详情
6.己知m、a1、a2、n和m、b1、b2、b3、n分别是两个等差数列(m≠n),则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}-{b}_{1}}$的值为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{3}{2}$D.$\frac{4}{3}$

分析 由等差数列的通项公式求出两个等差数列的公差,则可得所求结论.

解答 解:由m、a1、a2、n是等差数列,得d1=$\frac{n-m}{3}$,
由m、b1、b2、b3、n是等差数列,得d2=$\frac{n-m}{4}$,
∴$\frac{{a}_{2}-{a}_{1}}{{b}_{2}-{b}_{1}}$=$\frac{{d}_{1}}{{d}_{2}}=\frac{\frac{n-m}{3}}{\frac{n-m}{4}}=\frac{4}{3}$.
故选:D.

点评 本题考查等差数列的通项公式,考查了等差数列的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.下列说法及计算不正确的是①③.
①6名学生争夺3项冠军,冠军的获得情况共有36种.
②在某12人的兴趣小组中,有女生5人,现要从中任意选取6人参加2012年数学奥赛,用x表示这6人中女生人数,则P(X=3)=$\frac{C_5^3C_7^3}{{C_{12}^6}}$.
③|r|≤1,并且|r|越接近1,线性相关程度越弱;|r|越接近0,线性相关程度越强.
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设θ为第二象限角,若tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,则cosθ=$-\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),直线l过点 A(a,0),B(0,b),该双曲线的左焦点F1到直线l的距离等于该双曲线的短轴长的$\frac{2}{3}$.
(1)求该双曲线的离心率;
(2)若点F1到左准线的距离与它到渐近线的距离和是$\frac{16}{3}$+4$\sqrt{2}$,求该双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知用x升水清洗一次清洁度为c的受污物体,清洗后受污物体的清洁度为$\frac{x+c}{x+1}$,用y升水再次清洗该受污物体后的清洁度为$\frac{y{+3c}_{1}}{y+3}$,其中c1为首次清洗后的该物体的清洁度,现有一受污物体的清洁度为0.8,要求清洗后的清洁度不低于0.99.
(1)若只清洗一次,则至少需要多少升水?
(2)若清洗两次且每次用水量相等,则至少需要多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=2cos2($\frac{π}{4}$-x)+sin(2x+$\frac{π}{3}$)-1.
(1)求f(-$\frac{π}{12}$)的值;
(2)求f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.y=sin3x+sinx•cos2x的周期为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,b>0,a+b=1,求y=$\frac{1}{a}$+$\frac{4}{b}$的最小值;若a+b=2呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.不等式(m+1)x2-(1-m)x+m≤0对任意实数x都成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案