精英家教网 > 高中数学 > 题目详情
已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
分析:(1)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;
(2)由题意知f(0)=0,f(1)=-f(-1),解方程组即可求出m,n的值;
(3)由已知易知函数f(x)在定义域f(x)在(-∞,+∞)上为减函数.我们可将f(t2-2t)+f(2t2-k)<0转化为一个关于实数t的不等式组,解不等式组,即可得到实数t的取值范围.
解答:解:(1)∵指数函数y=g(x)满足:g(2)=4,
∴g(x)=2x
(2)由(1)知:f(x)=
-2x+n
2x+1+m
是奇函数.
因为f(x)是奇函数,所以f(0)=0,即
n-1
2+m
=0
,∴n=1;
∴f(x)=
-2x+1
2x+1+m
,又由f(1)=-f(-1)知
1-2 
4 +m
=-
1-
1
2
1 +m
,∴m=2;
(3)由(2)知f(x)=
-2x+1
2x+1+2
=-
1
2
+
1
2x+1

易知f(x)在(-∞,+∞)上为减函数.
又因f(x)是奇函数,从而不等式:
f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),
因f(x)为减函数,由上式推得:t2-2t>k-2t2
即对一切t∈R有:3t2-2t-k>0,
从而判别式△=4+12k<0,解得:k<-
1
3
点评:本题考查的知识点:待定系数法求指数函数的解析式,函数的奇偶性和函数单调性的性质,其中根据函数的单调性将f(t2-2t)+f(2t2-k)<0转化为一个关于实数t的不等式组是解答本题的关键,体现了转化的思想,考查了运算能力和灵活应用知识分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R,函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈[1,3],不等式f(t2-2t)+f(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)过点(1,3),函数f(x)=
-g(x)+ng(x)+1
是R上的奇函数.
(I)求y=g(x)的解析式;
(II)求n的值并用定义域判定y=f(x)的单调性;
(III)讨论关于x的方程xf(x)=m的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R上的函数f(x)=
-g(x)+ng(x)+m
是奇函数.
(Ⅰ)求y=g(x)与y=f(x)的解析式;
(Ⅱ)判断y=f(x)在R上的单调性并用单调性定义证明;
(Ⅲ)若方程f(x)=b在(-∞,0)上有解,试证:-1<3f(b)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=
n-g(x)m+2g(x)
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案