精英家教网 > 高中数学 > 题目详情
已知指数函数y=g(x)满足:g(2)=4,定义域为R上的函数f(x)=
-g(x)+ng(x)+m
是奇函数.
(Ⅰ)求y=g(x)与y=f(x)的解析式;
(Ⅱ)判断y=f(x)在R上的单调性并用单调性定义证明;
(Ⅲ)若方程f(x)=b在(-∞,0)上有解,试证:-1<3f(b)<0.
分析:(I)根据指数函数y=g(x)满足:g(2)=4,即可求出y=g(x)的解析式;由题意知f(0)=0,f(1)=-f(-1),解方程组即可求出m,n的值,即可求出y=f(x)的解析式;
(Ⅱ)任取x1,x2∈R,且x1<x2,根据指数函数的图象和性质,判断f(x1)-f(x2)的符号,进而根据函数单调性的定义可判断y=f(x)在R上的单调性
(Ⅲ)若方程f(x)=b,可得b∈(0,1),进而可得f(1)<f(b)<f(0),进而得到结论.
解答:解:(I)设g(x)=ax(a>0,a≠1),由g(2)=4得a=2,故g(x)=2x,…(2分)
∵函数f(x)=
-g(x)+n
g(x)+m
=
-2x+n
2x+m
是奇函数
∴f(0)=
-1+n
1+m
=0
∴n=1;又由f(1)=-f(-1)知
-2 +1
2 +m
=-
-
1
2
+1
1
2
 
+m
,解得m=1
∴f(x)=
1-2x
1+2x

(II)f(x)=
1-2x
1+2x
在(-∞,+∞)上为减函数,理由如下:
设x1,x2∈R,且x1<x2
2x12x2,1+2x1>0,1+2x2>0,
∴f(x1)-f(x2)=
1-2x1
1+2x1
-
1-2x2
1+2x2
=
2(2x2-2x1)
(1+2x1)(1+2x2)
>0
即f(x1)>f(x2
故f(x)=
1-2x
1+2x
在(-∞,+∞)上为减函数
证明:(III)若方程f(x)=b在(-∞,0)上有解,
1-2x
1+2x
=
2
1+2x
-1=b在(-∞,0)上有解,
∵此时2x∈(0,1)
2
1+2x
-1∈(0,1)
从而b∈(0,1)
由(II)得f(x)=
1-2x
1+2x
在(-∞,+∞)上为减函数
∴f(1)<f(b)<f(0).
-
1
3
<f(b)<0
即:-1<3f(b)<0
点评:本题考查的知识点:待定系数法求指数函数的解析式,函数的奇偶性和函数单调性的性质,方程的根与函数零点的关系,是函数问题的简单综合应用,难度中档
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R的函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(2)=4,定义域为R,函数f(x)=
-g(x)+n2g(x)+m
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈[1,3],不等式f(t2-2t)+f(2t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)过点(1,3),函数f(x)=
-g(x)+ng(x)+1
是R上的奇函数.
(I)求y=g(x)的解析式;
(II)求n的值并用定义域判定y=f(x)的单调性;
(III)讨论关于x的方程xf(x)=m的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=
n-g(x)m+2g(x)
是奇函数.
(1)确定y=g(x)的解析式;
(2)求m,n的值;
(3)若对任意的t∈R,不等式f(2t-3t2)+f(t2-k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案