【题目】已知点A(-2,0),B(2,0),曲线C上的动点P满足.
(1)求曲线C的方程;
(2)若过定点M(0,-2)的直线l与曲线C有公共点,求直线l的斜率k的取值范围;
(3)若动点Q(x,y)在曲线C上,求的取值范围.
【答案】(1);(2);(3)
【解析】试题分析:(1)设点,利用直接法求动点轨迹;(2)设直线方程,利用圆心到直线的距离和半径的大小进行求解;(3)将求斜率问题转化为判定直线和圆有公共点问题,再利用圆心到直线的距离和半径的大小进行求解.
试题解析:(1)设P(x,y),A·B=(x+2,y)(x-2,y)=x2-4+y2=-3,
得P点轨迹(曲线C)方程为x2+y2=1,
即曲线C是圆.
(2)可设直线l的方程为y=kx-2,
其一般方程为kx-y-2=0,
由直线l与曲线C有交点,得≤1,得k≤-或k≥,
即所求k的取值范围是(-∞,- ]∪[,+∞).
(3)由动点Q(x,y),设定点N(1,-2),
则直线QN的斜率kQN==u,
又点Q在曲线C上,故直线QN与圆有交点,
设直线QN的方程为y+2=u(x-1),
即ux-y-u-2=0.
当直线与圆相切时,=1,
解得u=-,
当u不存在时,直线与圆相切,
所以u∈(-∞,-].
科目:高中数学 来源: 题型:
【题目】为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:y=x2-200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.
该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“, 两项作品未获得一等奖”;
丁说:“作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的单调递增区间.
(2)当0<-<e时,若f(x)在区间(0,e)上的最大值为-3,求a的值.
(3)当a=-1时,试推断方程|f(x)|=是否有实数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+b图象上的点P(2,1)关于直线y=x的对称点Q在函数g(x)=lnx+a上.
(Ⅰ)求函数h(x)=g(x)-f(x)的最大值;
(Ⅱ)对任意x1∈[1,e],x2∈,是否存在实数k,使得不等式成立,若存在,请求出实数k的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2016·广州模拟)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,过线段AD的中点P作BC的平行线,分别交AB,AC于点M,N.
(1)证明:MN⊥平面ADD1A1;
(2)求二面角A-A1M-N的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的偶函数y=f(x)满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:
①f(2)=0;②直线x=-4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]上单调递增;④若关于x的方程f(x)=m在[-6,-2]上的两根分别为x1,x2,则x1+x2=-8.
其中所有正确命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.
参考公式: .
参考数据: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com