精英家教网 > 高中数学 > 题目详情
已知p:
2x-1
≤1,q:(x-a)(x-a-1)≤0.若p是q的充分不必要条件,求实数a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.
解答: 解:由
2x-1
≤1,得0≤2x-1≤1,即
1
2
≤x≤1

令A={x|
2x-1
≤1},得A={x|
1
2
≤x≤1},
令B={x|(x-a)(x-a-1)≤0},
得B={x|a≤x≤a+1},
若p是q的充分不必要条件,则A是B的真子集,
a≤
1
2
a+1≥1
,即0≤a≤
1
2

故实数a的取值范围是[0,
1
2
].
点评:本题主要考查充分条件和必要条件的应用,利用不等式的解法是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知偶函数f(x)对任意x∈R都有f(x+4)-f(x)=2f(2),则f(2014)的值等于(  )
A、2B、3C、4D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+bx+c在x=1处的切线是y=(3a-3)x-3a+4.
(1)试用a表示b和c;
(2)求函数f(x)在[1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求不等式x2-2x-3<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

对勾函数f(x)=ax+
b
x
,(a>0,b>0)是一种常见的基本初等函数,为了研究对勾函数f(x)=x+
4
x
的一些性质,例如单调性,奇偶性,最值等性质.首先通过列表法,列举了函数f(x)=x+
4
x
在(0,+∞)上部分自变量与函数值的对应值表,如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
(Ⅰ)函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减;函数f(x)=x+
4
x
,(x>0)在区间
 
上递增.当x=
 
时,y最小=
 

(Ⅱ)证明:函数f(x)=x+
4
x
(x>0)在区间(0,2)递减.
(Ⅲ)思考:函数f(x)=x+
4
x
(x<0)时,有最值吗?是最大值还是最小值?(注意:第(Ⅲ)问不必说明理由,直接写答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知长方形ABCD的两条对角线的交点为E(1,0),且AB与BC所在的直线方程分别为x+3y-5=0与ax-y+5=0.
(1)求AD所在的直线方程;
(2)求出长方形ABCD的外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是边长为a的正方形,所有侧棱长相等且等于a,若其外接球的半径为R,则
a
R
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

海上有A、B两岛相距10海里,从A岛望B岛和C岛成60°的视角,从B岛望C岛和A岛成30°视角,则B、C之间的距离是
 
海里.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x)满足f(x)-f(x+2)=0,且当x∈[0,1]时,f(x)=x•ex,若在区间[-1,3]内,函数g(x)=f(x)-kx-2k有且仅有3个零点,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案