精英家教网 > 高中数学 > 题目详情
10.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3),$\overrightarrow{c}$=(-2,m)
(1)若$\overrightarrow{a}$⊥($\overrightarrow{b}$+$\overrightarrow{c}$),求|$\overrightarrow{c}$|;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,求k的值.

分析 (1)根据向量的坐标的运算法则和向量垂直的条件,以及模的定义即可求出.
(2)根据向量共线的条件即可求出.

解答 解:(1)$\overrightarrow b+\overrightarrow c=(-4,3+m)$…(1分)
∵$\overrightarrow a⊥(\overrightarrow b+\overrightarrow c)$,∴$\overrightarrow a⊥(\overrightarrow b+\overrightarrow c)$•$\overrightarrow a⊥(\overrightarrow b+\overrightarrow c)$$\overrightarrow a•(\overrightarrow b+\overrightarrow c)=-4+2(3+m)=0$…(2分)
∴m=-1∴$\overrightarrow c=(-2\;,\;-1)$…(4分)
∴$|{\overrightarrow c}|$=$\sqrt{5}$…(5分)
(2)由已知:$k\overrightarrow a+\overrightarrow b=(k-2,2k+3)$,$2\overrightarrow a-\overrightarrow b=(4,1)$,…(6分)
因为$(k\overrightarrow a+\overrightarrow b)∥(k\overrightarrow a+\overrightarrow b)$,
所以:k-2=4(2k+3),…(9分)
∴k=-2…(10分)

点评 本题考查了向量的坐标运算以及向量的垂直和平行,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某工厂生产已知产品的总利润L(元)与产量x(件)的函数关系式为L=-x2+bx+c(0<x<200),且生产10件产品时总利润为1800元,生产20件产品时总利润为3500元.
(1)求L的解析式;
(2)产量是多少时,总利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为(  )
78166572080263140702436997280198
32049234493582003623486969387481
(  )
A.07B.04C.02D.01

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设y′是函数y=ex+e-x的导数,则y′=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设O是△ABC的重心,且30sinA•$\overrightarrow{OA}$+42sinB•$\overrightarrow{OB}$+35sinC•$\overrightarrow{OC}$=$\overrightarrow{0}$,则sinB=(  )
A.$\frac{5}{7}$B.$\frac{6}{7}$C.$\frac{2\sqrt{6}}{7}$D.$\frac{\sqrt{13}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知复数z=$\frac{1+i}{1-i}$,则|z|=(  )
A.2B.1C.0D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某教师对全班50名学生的学习积极性和对待班级工作的态度进行了调查,得到如下2×2列联表:
积极参加班级工作不太主动参加班级工作合计
学习积极性高18a125
学习积极性一般a219a4
合计24a350
(1)求2×2列联表中a1,a2,a3,a4的值,并用独立性检验的思想方法分析:是否有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关”?说明理由;
(2)随机抽查这个班的2名学生,求至少有1人积极参加班级工作的学生的概率.
附:
P(x2≥k)0.0500.0100.001 x2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$
k3.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.电视台与某广告公司签约播放两部影片集,其中影片集甲每集播放时间为19分钟(不含广告时间,下同),广告时间为1分钟,收视观众为60万;影片集乙每集播放时间为7分钟,广告时间为1分钟,收视观众为20万,广告公司规定每周至少有6分钟广告,而电视台每周只能为该公司提供不多于80分钟的节目时间(含广告时间).
(Ⅰ)问电视台每周应播放两部影片集各多少集,才能使收视观众最多;
(Ⅱ)在获得最多收视观众的情况下,影片集甲、乙每集可分别给广告公司带来a和b(万元)的效益,若广告公司本周共获得3万元的效益,记S=$\frac{8}{a}$+$\frac{5}{b}$为效益调和指数(单位:万元),求效益调和指数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.各项均不相等的等差数列{an}的前四项的和为S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式an与前n项和Sn
(2)记Tn为数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和,求Tn

查看答案和解析>>

同步练习册答案