分析 (1)利用生产10件产品时总利润为1800元,生产20件产品时总利润为3500元,建立方程,求出b,c,即可求L的解析式;
(2)配方,由此得出,当x=100时,函数L达到最大值9900元.
解答 解:(1)∵生产10件产品时总利润为1800元,生产20件产品时总利润为3500元,
∴$\left\{\begin{array}{l}{-100+10b+c=1800}\\{-400+20b+c=3500}\end{array}\right.$,
∴b=200,c=-100,
∴L=-x2+200x-100(0<x<200);
(2)将此函数表达式配方得,L=-(x-100)2+9900.
由此得出,当x=100时,函数L达到最大值9900元.
点评 本题主要考查利用数学知识解决实际问题,考查求二次函数在闭区间上的最值,求函数的最值,二次函数的性质的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪($\frac{1+\sqrt{3}}{2}$,+∞) | B. | (-∞,$\frac{-1+\sqrt{3}}{2}$)∪(1,+∞) | ||
| C. | (-∞,-1)∪(1,+∞) | D. | (-∞,$\frac{-1-\sqrt{3}}{2}$)∪($\frac{1+\sqrt{3}}{2}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{(2n-1){3}^{n}+5}{2}$ | B. | $\frac{(2n-3){3}^{n}+5}{2}$ | C. | $\frac{(2n-5){3}^{n}+5}{2}$ | D. | $\frac{(2n+5){3}^{n}+5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜爱程度 | 非常喜欢 | 一般 | 不喜欢 |
| 人数 | 500 | 200 | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{9}{16}$ | B. | $\frac{7}{16}$ | C. | $\frac{13}{16}$ | D. | $\frac{3}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$=$\overrightarrow{b}$ | B. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | C. | $\overrightarrow{a}$⊥$\overrightarrow{b}$ | D. | $\overrightarrow{a}$∥$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com