精英家教网 > 高中数学 > 题目详情
15.已知复数z=$\frac{1+i}{1-i}$,则|z|=(  )
A.2B.1C.0D.$\sqrt{2}$

分析 通过分母有理化即得结论.

解答 解:∵z=$\frac{1+i}{1-i}$=$\frac{(1+i)(1+i)}{(1-i)(1+i)}$=$\frac{1+2i+{i}^{2}}{1-{i}^{2}}$=i,
∴|z|=|i|=1,
故选:B.

点评 本题考查复数求模,分母有理化是解决本题的关键,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.一个电路如图所示,C、D、E、F为4个开关,其闭合的概率都是$\frac{1}{2}$,且是相互独立的,则灯亮的概率是(  )
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{13}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.从编号为0,1,2…,49的50件产品中,采用系统抽样的方法抽取容量是5分样本,若编号为27的产品在样本中,则该样本中产品的最大编号为47.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若曲线y=ax-lnx在(1,a)处的切线平行于x轴,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,3),$\overrightarrow{c}$=(-2,m)
(1)若$\overrightarrow{a}$⊥($\overrightarrow{b}$+$\overrightarrow{c}$),求|$\overrightarrow{c}$|;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=sinx与直线y=$\frac{2}{π}$x所围成的平面图形的面积是2-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式组$\left\{\begin{array}{l}{\frac{x-2}{x+3}<0}\\{{x}^{2}+2x-3≥0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.统计局就某地居民的月收入情况调查了10000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在[500,1000).
(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2500)的应抽取多少人?
(2)根据频率分布直方图估计样本数据的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用0,1,2,3,4,5这六个数字组成没有重复数字的四位数,这样的四位数中,偶数的个数有156个(用数字作答)

查看答案和解析>>

同步练习册答案