精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2ax(a>0)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上不等式|f(x)|≤5恒成立,求出M(a)的解析式.
考点:二次函数的性质
专题:函数的性质及应用
分析:根据二次函数的图象和性质,结合函数对折变换,由已知中在整个区间[0,M(a)]上不等式|f(x)|≤5恒成立,分-a2<-5时和-a2≥-5时,两种情况分别求出对应的M(a)的解析式,最后综合讨论结果,可得答案.
解答: 解:由a>0,f(x)=x2-2ax=(x-a)2-a2
当-a2<-5,即a>
5
时,
要使|f(x)|≤5,在x∈[0,M(a)]上恒成立,
要使得M(a)最大,M(a)只能是x2-2ax=-5的较小的根,
即M(a)=a-
a2-5

当-a2≥-5,即0<a≤
5
时,
要使|f(x)|≤5,在x∈[0,M(a)]上恒成立,
要使得M(a)最大,M(a)只能是x2-2ax=5的较大的根,
即M(a)=a+
a2+5

所以M(a)=
a-
a2-5
,a>
5
a+
a2+5
,0<a≤
5
点评:本题考查的知识点是二次函数的性质,函数的最值,对折变换,分类讨论思想,是函数图象和性质的综合应用,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

线段AB是圆C1:x2+y2=10的一条直径,离心率为
5
的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的一个公共点,则|PA|+|PB|的值为(  )
A、2
2
B、2
15
C、4
3
D、6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-
1
2
x2+2x-5的图象的对称轴是(  )
A、直线x=2
B、直线a=-2
C、直线y=2
D、直线x=4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆C1
x2
a2
+
y2
b2
=1(a>b,b>0)和圆C2:x2+y2=b2,已知圆C2将椭圆Cl的长轴三等分,且圆C2的面积为π.椭圆Cl的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆C2相交于点A、B,直线EA、EB与椭圆C1的另一个交点分别是点P、M.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)(i)设PM的斜率为t,直线l斜率为K1,求
K1
t
的值;
(ii)求△EPM面积最大时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数y=ax2+bx+c,当x=0时,y=0;当x=30时,y=4;当x=60时,y=0,求该函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:对于任意的m值,二次函数y=x2+mx-(m-1)与y=x2+x+m2至少有一个恒取正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,四边形ADEF为梯形,AD∥FE,∠AFE=60°,且平面ABCD⊥平面ADEF,AF=FE=AB=
1
2
AD
=2,点G为AC的中点.
(Ⅰ)求证:EG∥平面ABF;
(Ⅱ)求三棱锥B-AEG的体积;
(Ⅲ)试判断平面BAE与平面DCE是否垂直?若垂直,请证明;若不垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}前n项和为Sn,已知a1=3,S3=12.
(Ⅰ)求Sn
(Ⅱ)若列数{bn}满足b1=a1,bn+1=bn+2 an(n∈N*),求列数{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5,6,7,8},在U中任取四个元素组成的集合记为A={a1,a2,a3,a4},余下的四个元素组成的集合记为∁UA={b1,b2,b3,b4},若a1+a2+a3+a4<b1+b2+b3+b4,则集合A的取法共有
 
种.

查看答案和解析>>

同步练习册答案