精英家教网 > 高中数学 > 题目详情
8.已知集合A={-2,-1,0,1,2},B={x|x=3k-1,k∈z},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0,1}C.{-1,2}D.{-2,1}

分析 由A与B,求出两集合的交集即可.

解答 解:∵A={-2,-1,0,1,2},B={x|x=3k-1,k∈Z},
∴A∩B={-1,2},
故选C

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.经过双曲线的左焦点F1作倾斜角为30°的直线,与双曲线的右支交于点P,若以PF1为直径的圆恰好经过双曲线的右焦点,则双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么数学就没有什么问题.”某班针对“高中生物理学习对数学的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的数学和物理成绩如表
  1 2 3 4 5
 物理成绩 90 85 74 68 63
 数学成绩 130 125 110 95 90
(1)求数学成绩y对物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+a($\widehat{b}$精确到0.1),若某位同学的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的五位学生中随机抽取2位参加一项知识竞赛,求选出的学生的数学成绩至少有一位高于120-分的概率.
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\widehat{y}$-b$\overline{x}$)
(参考数据:902+852+742+682+632=29394)
90×130+85×125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式$\frac{{({x+1})({x+3})}}{{{{({x-1})}^2}}}≤0$的解是[-3,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4$\sqrt{5}$,焦点三角形的周长为4$\sqrt{5}$+12,则椭圆C的方程是$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设点P为公共焦点F1(-2,0),F2(2,0)的椭圆和双曲线的一个交点,且cos∠F1PF2=$\frac{3}{5}$,已知椭圆的长轴长是双曲线实轴长的4倍,则双曲线的离心率为(  )
A.$\frac{1}{2}$B.2C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设F1,F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两焦点,若椭圆C上的点A(0,$\sqrt{3}$)到F1,F2两点的距离之和为4,
(1)求椭圆C的方程;
(2)求椭圆C的短轴长和焦距.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$f(α)=\frac{{cos(\frac{π}{2}+α)•cos(2π-α)•sin(\frac{3π}{2}-α)}}{{sin(π-α)•sin(\frac{3π}{2}+α)}}$.
(1)化简f(α);
(2)若α是第三象限角,且$cos(α+\frac{π}{2})=\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设x,y∈R,向量$\overrightarrow i,\overrightarrow j$分别为直角坐标平面内x,y轴正方向上的单位向量,若向量$\overrightarrow a=(x+\sqrt{3})\overrightarrow i+y\overrightarrow j$,$\overrightarrow b=(x-\sqrt{3})\overrightarrow i+y\overrightarrow j$,且$|\overrightarrow a|+|\overrightarrow b|=4$.
(Ⅰ)求点M(x,y)的轨迹C的方程;
(Ⅱ)设椭圆$E:\frac{x^2}{16}+\frac{y^2}{4}=1$,P为曲线C上一点,过点P作曲线C的切线y=kx+m交椭圆E于A、B两点,试证:△OAB的面积为定值.

查看答案和解析>>

同步练习册答案