分析 (1)利用已知条件求出椭圆的a,b然后求解椭圆的标准方程.
(2)利用标准方程求解椭圆C的短轴长和焦距.
解答 (本小题满分12分)
解:(1)F1,F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两焦点,若椭圆C上的点A(0,$\sqrt{3}$)到F1,F2两点的距离之和为4,可得b=$\sqrt{3}$,a=2,
则椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)椭圆C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
短轴长$2\sqrt{3}$,长轴长为:4,则焦距2c=2.
点评 本题考查椭圆方程的求法,椭圆的简单性质的应用,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0,1,2} | B. | {-1,0,1} | C. | {-1,2} | D. | {-2,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f($\frac{π}{6}$)sin1<$\frac{1}{2}$f(1) | B. | f($\frac{π}{6}$)sin1=$\frac{1}{2}$f(1) | ||
| C. | f($\frac{π}{6}$)sin1>$\frac{1}{2}$f(1) | D. | 无法确定f($\frac{π}{6}$)sin1与$\frac{1}{2}$f(1)的大小 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com